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Abstract. The process of manual species identifica-
tion is a daunting task, so much so that the number 
of taxonomists is seen to be declining. In order to as-
sist taxonomists, many methods and algorithms have 
been proposed to develop semi-automated and fully 
automated systems for species identification. While 
semi-automated tools would require manual inter-
vention by a domain expert, fully automated tools 
are assumed to be not as reliable as manual or semi-
automated identification tools. Hence, in this study 
we investigate the accuracy of fully automated and 
semi-automated models for species identification. We 
have built fully automated and semi-automated spe-
cies classification models using the monogenean spe-
cies image dataset. With respect to monogeneans’ 
morphology, they are differentiated based on the 
morphological characteristics of haptoral bars, an-
chors, marginal hooks and reproductive organs (male 
and female copulatory organs). Landmarks (in the 
semi-automated model) and shape morphometric 
features (in the fully automated model) were extract-
ed from four monogenean species images, which 
were then classified using k-nearest neighbour and 
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artificial neural network. In semi-automated models, 
a classification accuracy of 96.67 % was obtained us-
ing the k-nearest neighbour and 97.5 % using the 
artificial neural network, whereas in fully automated 
models, a classification accuracy of 90 % was ob-
tained using the k-nearest neighbour and 98.8 % us-
ing the artificial neural network. As for the cross-
validation, semi-automated models performed at 
91.2 %, whereas fully automated models performed 
slightly higher at 93.75 %.

Introduction
Monogeneans are a group of ectoparasites with cate-

gorical homogeneous but diverse morphology and ad-
vance adaptive radiation in the flatworm clade (Brooks 
and McLennan, 1993). The variation of structural de-
signs in the attachment organs are usually used as discri-
minant characters in taxonomy (Kearn, 2013). In par-
ticular, monogeneans can be classified based on haptoral 
attachment organs such as anchors, bars and hooks. There 
are about 25,000 species of monogeneans (Whittington, 
1998).

Taxonomists’ eagerness to reduce the time consumed 
for analysing samples (Benfield et al., 2007) and to sig-
nificantly cut down the costs (Kalafi et al., 2018) were 
the main reasons that influenced the development of 
image-based identification systems. Culverhouse et al. 
(2003) have shown that categorizing specimens from 
species that have significant variations in their morphol-
ogy is difficult. They also reported that the returned ac-
curacy by the trained personnel and experts for distin-
guishing and labelling specimens is expected to be in 
the range of 64 % to 95 %, which is within the perfor-
mance range of automated methods. Classification of 
specimens’ images to their corresponding species re-
quires development of models and methods that are able 
to characterize a species’ morphology and apply this 
knowledge to their recognition (Wong et al., 2016; Ali et 
al., 2017).
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Morphometric analysis plays an important role in bi-
ological taxonomy since it hands out quantitative de-
scription of the organism (See et al., 2016). Morphometric 
analysis is carried out by measuring linear inter-land-
mark distances such as length, width, and height and by 
use of multivariate statistical tools describe the patterns 
of shape variation among classes (Adams et al., 2004). 
However, there was a problem in producing similar re-
sults for two different specimens based on data without 
geometrical information by using distance measure-
ments. To overcome this problem, a method called land-
mark-based morphometry was applied whereby a set of 
used landmarks are described by a tightly defined set of 
rules. 

In semi-automated identification of monogenean spe-
cies (Ali et al, 2012), features were extracted using ac-
tive shape models (ASM) and classification was per-
formed using two linear classifiers: linear discriminant 
analysis (LDA) and k-nearest neighbours (KNN) (Duda 
et al., 2012), and two non-linear classifiers: multilayer 
perceptron (MLP) and support vector machine (SVM). 
The study reported an accuracy of 85.71 % using LDA, 
95.59 % using MLP and 98.75 % using KNN (Ali et al., 
2012). KNN outperformed other classifiers due to the 
small sample size, as KNN is known for classifying with 
a limited number of datasets (Jin et al., 2015). In the 
study by Ververidis and Kotropoulos (2008), sequential 
backward selection (SBS), sequential forward selection 
(SFS) and sequential forward floating selection (SFFS) 
were used for selecting proper features for monogenean 
classification, and the results indicated that of the 25 
features, 21 were ideal in classification of monogenean 
species. In multi-stage classification of monogenean 
species using 21 features, LDA outperformed KNN and 
naive Bayes (NB) (Ali et al., 2011). Morphological data 
from anchor and body size of 13 ligophorus (Monogenea: 
Ancyrocephalidae) species from Malaysia were used in 
a semi-automated classification model developed by 
Khang et al. (2016). Khang et al. (2016) employed mor-
phological characters in anchor morphometry, adopting 
phylogenetic regression of anchor shape against body 
size and anchor size, and discovered two new morpho-
logical characters according to the length between the 
inner root point and the dent point, and the length be-
tween the inner root length and the outer root length. In 
the image retrieval framework for monogeneans (Abu et 
al., 2013), a monogenean haptoral bar image (MHBI) 
architecture was developed to demonstrate the integra-
tion of textual and content-based information in con-
structing a viable image retrieval system for the mono-
genean species.

Fully automated identification systems may signifi-
cantly improve species recognition by facilitating reli-
able identification of any specimen in a population. 
Automated methods that rely on pattern recognition and 
image analysis have been widely applied to recognition 
and categorization of biological images in the field of 
biodiversity (Mosleh et al., 2012; Loos and Ernst, 2013; 
Yu et al., 2013; Leow et al., 2015; Zhan et al., 2015; 

Kalafi et al., 2016; Salimi et al., 2016; Mehdipour Ghazi 
et al., 2017). In the study by Kalafi et al. (2016), a fully 
automated identification model was developed using 
KNN and artificial neural network (ANN) classifiers 
and an overall accuracy of 90 % was achieved. Kalafi et 
al. (2016) performed automated selection of features 
based on the morphology of anchors and bars used in 
classifiers. 

Contrary to previous studies, in the current study, we 
compared the performance of semi-automated and fully 
automated models for the classification of monogeneans. 

Material and Methods
Recognition of monogeneans is usually done based 

on the shape and size of their hard parts, which are dor-
sal and ventral anchors, bars, as well as their male and 
female copulatory organs (Kalafi et al., 2016). Thus, ac-
curate recognition of monogeneans is very much depend-
ent on the features that are extracted from these parts. In 
this study, digital images of anchors from monogenean 
species, namely, Sinodiplectanotrema malayanus (Sm), 
Trianchoratus pahangensis (Tp), Metahaliotrema miz-
ellei (Mm) and Metahaliotrema similis (Ms) were taken 
using a Leica digital camera attached to a Leica micro-
scope (Wetzlar, Germany) at 40× magnification (Fig. 1).

Semi-automated classification
In the semi-automated approach, all computations 

were performed using Acer Aspire ES1-432-P8HQ 
hardware and R program (Version 3.3.2).

Landmark coordinates
Landmarks coordinates of the monogenean anchors 

were plotted manually using the R program. We used 
monogeneaGM R package (Khang et al., 2016) to ob-
tain the geometric morphometric data of monogenean 
species. In this study, five landmarks were taken: inner 

E. Y. Kalafi et al.

Fig. 1. Illustration of anchors and bars of monogeneans 
(a) Sinodiplectanotrema malayanus, (b) Trianchoratus pa-
hangensis, (c) Metahaliotrema mizellei, (d) Metahalio-
trema similis
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root point, groove point, outer root point, curve point, 
and tip point, as in Fig. 1a. Landmark selection (“point-
and-click” at the locations of the landmarks) was per-
formed in every image in the database. Finally, a total of 
20 landmark coordinates were selected for every image.

Inter-landmark distances
In the next step, inter-landmark distances between 

two points of the landmark coordinates were calculated. 
The guideline for the measurements is shown in Fig. 1b. 
Each of the seven inter-landmark distances contains 
four variables: R/L and V/D prefixes of a variable name, 
which indicates right or left forms and ventral or dorsal 
anchor, respectively. This makes up 28 features for eve-
ry specimen, which are then used to represent each of 
the images.

Data analysis
The list of 28 features of inter-landmark distances 

used in the data analysis is presented in Table 1. The 
features were extracted from landmarks and inter-land-
mark distances in each anchor (Fig. 2). 

These features represent each individual, and a total 
of 80 individuals were analysed using principal compo-
nent analysis (PCA). Scatterplot was used to aid inter-
pretation of the principal component (PC) axes. 

In addition, KNN and ANN were used as classifica-
tion methods to demonstrate their relative performance 
of classification at the species level. KNN classification 
is a non-parametric classification method in which pix-
els are assigned to classes based on the number of neigh-
bour pixels that belong to the classes (Lamourette, 
2000). Due to the small sample size used in this study, 
KNN with 5-fold cross-validation was applied to assess 
the results generalization of the system to an independ-
ent dataset. As for ANN, the multi-layered perceptron 
(MLP) with feed forward neural network of the ANN 
architecture maps input data into a set of appropriate 
outputs with 50 hidden layers.

Fully automated classification

Matlab R2013a (“Image Processing Toolbox –
MATLAB,” n.d.) was used as the Image Processing 
Toolbox, installed on Intel(R) Xeon (R) CPU E5-1620 
v2 @ 3.70GHz, 16.00GB RAM, Windows 7 Professio-
nal (64-bit) to develop a fully automated identification 
model in this study. 

Image processing
Background feature minimization is an important pre-

processing step in monogenean classification (Fig. 3) to 
distinguish the soft part features of monogeneans from 
the hard parts, particularly to avoid unreliable results 
during texture analysis. In this study, image processing 
was performed using the following essential steps:

Table 1. Features of inter-landmark distances extracted in the semi-automated identification model

Left Dorsal Inner Root (LDIR) Left Ventral Inner Root (LVIR)
Left Dorsal Outer Root (LDOR) Left Ventral Outer Root (LVOR)
Left Dorsal Inner Length (LDIL) Left Ventral Inner Length (LVIL)
Left Dorsal Outer Length (LDOL) Left Ventral Outer Length (LVOL)
Left Dorsal Point (LDPt) Left Ventral Point (LVPt)
Left Dorsal projection from LM2 to LM4 (LD24) Left Ventral projection from LM2 to LM4 (LV24)
Left Dorsal projection from LM1 to LM3 (LD13) Left Ventral projection from LM1 to LM3 (LV13)
Right Dorsal Inner Root (RDIR) Right Ventral Inner Root (RVIR)
Right Dorsal Outer Root (RDOR) Right Ventral Outer Root (RVOR)
Right Dorsal Inner Length (RDIL) Right Ventral Inner Length (RVIL)
Right Dorsal Outer Length (RDOL) Right Ventral Outer Length (RVOL)
Right Dorsal Point (RDPt) Right Ventral Point (RVPt)
Right Dorsal projection from LM2 to LM4 (RD24) Right Ventral projection from LM2 to LM4 (RV24)
Right Dorsal projection from LM1 to LM3 (RD13) Right Ventral projection from LM1 to LM3 (RV13)

Fig. 2. Anchor morphometry
(a) Landmarks include: 1. inner root point, 2. groove point, 
3. outer root point, 4. curve point, 5. tip point. (b) Inter-land-
mark distances include: A. inner root (IR), B. outer root 
(OR), C. inner length (IL), D. outer length (OL), E. point 
(Pt), F. projection from LM2 to LM4 (24), G. projection 
from LM1 to LM3 (13).



140 Vol. 64

• Conversion of RGB images to intensity images;
• Filtering of intensity images; 
• Detection of anchor and bar edges of monogeneans;
• Conversion of images to binary images with a thre-

shold of zero. The intensity image was deducted from 
the filtered image and the result was an intensity 
image that contained negative and positive values. 
Therefore, pixels greater than 0 were labelled as 1 
(white) and other pixels were labelled as 0 (black).

• Particles smaller than 1000 pixels were removed and 
only the segmented bars and anchors were used in fe-
ature extraction. 

Feature extraction
The shape descriptors were used to extract features 

from bars and anchors in the segmented images by using 
appropriate functions in Matlab. The extracted features 
are shown in Table 2. 

Feature selection

In order to decrease the number of unnecessary fea-
tures and to increase the performance of classifiers, the 
attributes were selected automatically using LDA. LDA 
was used as a feature dimensionality reduction tech-
nique as well as a pre-step for a typical classification 
task. After performing LDA, the feature vector of 10 ele-
ments was reduced to a feature vector of three elements.

Classification 
In this study, classification was performed using two 

classifiers, which are KNN and ANN. KNN identifies 
the test sample by a majority vote of its neighbours, 
which are assigned to the class that is most common 
among its nearest neighbours. KNN was performed in 
many iterations and the best performance was achieved 
at the third nearest neighbour in the semi-automated 

Intensity Filtered image Edge detection

Binary image Segmented image

Fig. 3. Image processing steps in the fully automated identification model

Table 2. Extracted features in the fully automated model

Features Description
Euler number Number of objects in the region minus the number of holes in these objects
Perimeter Distance around the boundary of the region
Area Actual number of pixels in the region of a particular object
Area density Mass of a substance covering a unit of area
Perimeter density Measure of length of the perimeter of a set in free boundary
Centre of bounding box Central point of the smallest rectangle containing the region
Length of bounding box Length of the smallest rectangle containing the region
Width of bounding box Width of the smallest rectangle containing the region
Orientation of bounding box Angle between the x-axis and the major axis of the ellipse that has the same second-moments as 

the smallest rectangle containing the region (“Measure properties of image regions – MATLAB 
regionprops,” n.d. 2018, https://www.mathworks.com/help/images/ref/regionprops.html)

E. Y. Kalafi et al.
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model and at the 10th nearest neighbour in the fully au-
tomated identification model. Five-fold cross-validation 
was used to assess how the results of our model general-
ize to an independent dataset. The ANN classification 
structure in the fully automated identification model was 
a two-layer feed-forward network, which was trained 
with back propagation and with ten hidden neurons in 
the hidden layer and eight neurons in the output layer.

Results
In the semi-automated model, the value of k was set 

to 3 and data was randomly selected for training (60 %) 
and testing (40 %). The result of the classification 
achieved an overall accuracy of 96.67 % using KNN 
and 97.5 % using ANN. 

In the fully automated model, 10 images of each 
monogenean species were used to train KNN. We per-
formed KNN in many iterations to find the nearest 
neighbour and to do a majority voting. The best result 
achieved was with ten nearest neighbours with an over-
all accuracy of 90 %. 

In the ANN classification, the overall accuracy 
achieved was 97.50 % and only one species was mis-
classified in the ANN classification. After 62 iterations, 
the best trained network was selected with mean square 
error (MSE) of 0.003972 for the validated set at epoch 
56 (Fig. 4). The overall accuracy of ANN classification 
was 98.8 % of all 80 images in the training, validation 
and testing set.

System evaluation

The performance of both semi and fully automated 
models were evaluated by comparing the output from 
the trained models with the predicted result using the 
testing dataset as the input.

Cross-validation is a method that is able to provide an 
unbiased estimation, which presents high variance with 
small samples. It is an efficient method to estimate the 
class distribution of two or more groups when the num-
ber of samples is rather small for effective sample split-
ting (Fu and al., 2005). In this study, 5-fold cross-valida-
tion was implemented to evaluate the performance of 
both models. The average accuracy of the correct clas-
sification in the semi-automated model was 91.25 % and 
93.75 % in the fully automated model. 

Table 3 presents the accuracy of different classifica-
tion methods for four monogenean species in fully and 
semi-automated identification models. Overall, ANN 
outperforms KNN; however, KNN’s accuracy was close 
to ANN, especially in the semi-automated model.

Discussion
Morphometric approaches are commonly built ac-

cording to distance measurements. However, results of 
morphometric analyses can depend upon the acquired 
images (Kalafi et al., 2015, 2016) and the particular set 
of measurements chosen (Strauss and Bookstein, 1982; 
James Rohlf and Marcus, 1993). According to some 
studies, most morphological features that are extracted 
from haptoral hard parts are highly correlated (Shinn et 
al., 1996; Preez and Maritz, 2006) and automatic clas-
sification of monogenean species requires improved dis-
criminant methods for such multicollinearity, especial-
ly for small sample sizes where several morphological 
measurements are used to classify a few individuals 
(Vignon, 2011). 

According to KNN and ANN classification results in 
both semi and fully automated identification models, it 
is notable that ANN outperformed KNN in both classifi-
cation models. However, more importantly, the overall 
performance in both classification models was quite 
close. This demonstrates that features which were ex-
tracted automatically from shape descriptors of anchors 
and bars are as reliable as the features that were extract-
ed manually from the anchors’ landmarks. 

In KNN classification of the semi-automated model, 
one sample of Tp was misclassified with Mm. This mis-
classification was caused by the same inter-landmark 
distances between both species, even though they have Fig. 4. Illustration of performance evaluation of the trained 

network by MSE

Table 3. Summary of KNN, ANN and cross-validation classifications in fully and semi-automated classification

KNN ANN Cross-validation
Semi-automated model 96.7 97.5 91.2
Fully automated model 90.0 98.8 93.7

Fully or Semi-Automated Identification of Monogenean Species
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different shapes. This misclassification can be sorted if 
shape analysis is included to further differentiate the 
species.

One of the challenges in morphometric measurements 
is the dependency of the generated results on the quality 
of landmarks. In the semi-automated identification 
model, much more effort is required in choosing land-
marks that would have high diagnostic property. Each 
landmark has to be present on every studied specimen 
(Fig. 5), and if the landmark is not present on at least 
one of the studied specimens, it either has to be marked 
approximately or it cannot be used at all (Webster and 
Sheets, 2010). 

In the fully automated identification model, although 
measurements are assessed automatically, they are still 
highly dependent on the quality of images (Kalafi et al., 
2016).

In semi-automated identification of monogeneans, 
features were extracted from one anchor, but in the fully 
automated identification model, features were extracted 
from all anchors and bars. Hence, more detailed image 
processing can be performed using the automated ap-
proach rather than manual, which is not only more tedi-
ous, but time consuming. Finally, in line with the advan-
cement of technology and image processing approaches, 
it would be ideal to shift from using manual or semi-
automated techniques in the species recognition to fully 
automated systems. It is hoped that in the era of data 
science, species recognition in a large amount of data-
sets can be done using the computing power, which is 
quick and easy to use. 

Conclusions
In this study, ANN and KNN classifiers were used in 

both semi and fully automated identification models for 
monogenean images. Both models may assist taxono-
mists and monogenean experts to analyse monogenean 
morphology; however, preference should be given to a 
fully automated identification model since less effort is 
required to handle the morphological measurements. 
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