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Abstract. Leukaemia inhibitory factor (LIF) has a 
wide variety of biological activities. While recent 
studies have focused on the role of LIF in osteoblast 
differentiation, the exact role of LIFR during the 
early stage of osteogenic differentiation remains un-
clear. We observed that LIFR expression gradually 
decreased during the early stage of osteogenic dif-
ferentiation of hMSCs. To evaluate how LIFR regu-
lates osteogenic differentiation in greater depth, we 
transfected hMSCs with LIFR overexpression and 
siRNA lentiviral plasmids. Cells were divided into 
four groups: a negative overexpression control group, 
a LIFR overexpression group, a negative siRNA con-
trol group, and a LIFR siRNA group. On different 
days (0, 3, and 6) of the osteogenic differentiation of 
hMSCs, alkaline phosphatase (ALP) activity was as-
sayed with an ALP staining and activity assay kit. 
Cells were harvested to assess the mRNA and protein 
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expression of LIF, LIFR, and osteogenesis-related 
factors (ALP; RUNX2; osteonectin) by qRT-PCR 
and western blot analyses, respectively. In addition, 
culture supernatants were tested for the LIF content 
by ELISA. Our results showed that overexpression 
of LIFR significantly suppressed the osteoblast dif-
ferentiation of hMSCs. In contrast, LIFR siRNA 
markedly improved this osteoblast differentiation as 
determined by ALP staining and activity measure-
ments. Moreover, RUNX2, ALP, and ONN expres-
sion was also significantly changed by altering LIFR 
expression. We further analysed the expression of 
LIF and LIFR, revealing consistent LIF and LIFR 
trends during the osteogenic differentiation of hMSCs. 
Together, these results suggested that LIFR may be a 
novel negative regulator during the early stage of 
hMSC osteogenic differentiation.

Introduction
human mesenchymal stem cells (hMSCs) from bone 

marrow aspirates have the capacity to undergo self-re-
newal and multipotential differentiation (Pittenger et al., 
1999). in the human body, hMSCs can be directed to 
differentiate into osteoblasts and adipocytes (Barry et 
al., 2001; arinzeh, 2005; helder et al., 2007; Rosen et 
al., 2012). if the homeostatic balance between these two 
cell types is disrupted such that there is a relative reduc-
tion in osteoblasts and an increase in adipocytes, this 
will lead to decreased bone mass, which may be a key 
process regulating the development of osteoporosis 
(Scheideler et al., 2008). During the development and 
differentiation of hMSCs, specific genes are activated 
and suppressed in a particular order to regulate the dif-
ferent stages of osteogenic differentiation (Steward and 
Kelly, 2015). The early stage of hMSC differentiation 
are particularly important, as they determine the future 
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development of cells (Park et al., 2013; Martino et al., 
2014). as such, the regulatory mechanisms governing 
the early osteogenic differentiation of hMSCs have been 
a major area of recent research. hMSCs that have been 
expanded in culture thus represent an ideal model for 
use in the exploration of the molecular events that trig-
ger human osteogenic differentiation (okolicsanyi et 
al., 2015).

The leukaemia inhibitory factor receptor (LiFR) con-
sists of the LIFR α subunit (gp190) and β subunit (gp130) 
(Pan et al., 2006; del Valle et al., 2013). When leukae-
mia inhibitory factor (LiF) exerts its biological effects, 
it must combine with the LIF receptor α subunit of the 
target cell membrane and then form heterologous di-
mers with the β subunit, leading to protein phosphoryla-
tion to further initiate intracellular signalling (Plun-
Favreau et al., 2003; huang et al., 2012; hwang et al., 
2015). LiF is known to induce differentiation of murine 
myeloid leukaemia cell line M1 (Piekorz, 1998). LiF 
has also been demonstrated to have multiple effects on 
the regulation of osteogenic differentiation and bone 
formation (Malaval et al., 1995; Sims and Johnson, 2012).

interestingly, to date there has been little focus on the 
role of LiFR in osteogenesis, with most research instead 
focused on LiF and leaving the role of LiFR in this pro-
cess unclear. early in our studies, we found that LiFR 
expression gradually decreases during the early stage of 
osteogenic differentiation of hMSCs, suggesting that 
LiFR may play a regulatory role in this complex pro-
cess.

To evaluate the role of LiFR in the regulation of os-
teoblast differentiation in a more in-depth manner, LiFR 
overexpression and siRna lentiviral plasmids were 
used to transfect hMSC cells. We further assessed the 
expression of LiF and LiFR over the course of osteo-
genic differentiation of hMSCs. Our findings suggest 
that LiFR may be a novel negative regulator during the 
early stage of osteogenic differentiation of hMSCs.

Material and Methods

Cell culture and osteogenic differentiation

human bone marrow mesenchymal stem cells 
(hMSCs) (huXMa-01001, Cyagen Biosciences, China) 
were confirmed to be positive for CD29, CD44, and 
CD105 (> 70 %) and negative for CD14 and CD45 
(< 5 %) by flow cytometry. The hMSCs were plated to a 
density of 5 × 104cells/cm2 and cultured in oriCellTM 
human Mesenchymal Stem Cell growth Medium 
(huXMa-90011, Cyagen Biosciences) containing 10 % 
(v/v) foetal bovine serum, glutamine, and antibiotics 
penicillin and streptomycin under 5 % (v/v) Co2 at 37 °C 
and 95% air humidity. The cells were passaged every 
3 or 4 days with 0.25% trypsin-eDTa solution (invitro-
gen, Carslbad, Ca). The hMSCs between passages 3 
and 6 were used in all experiments.

When cells were grown to 70% confluence, they were 
subsequently subjected to osteogenic differentiation for 

6 days using media containing 50 mM ascorbic acid 
(Sigma-Aldrich, St. Louis, MO), 10 mM β-glycero-
phosphate (Sigma-aldrich), and 100 nM dexametha-
sone (Sigma-aldrich). This differentiation medium was 
replaced every 3 days.

Lentiviral infection and hMSC selection
Lentivirus-mediated LiFR overexpression and siRna 

expressing constructs were pre pared by Shanghai 
genechem Co., Ltd. Cells were divided into four groups: 
a negative overexpression control group, a LiFR over-
expression group, a negative siRna control group, and 
a LiFR siRna group. The lentiviral titre was determined 
via serial dilution. hMSCs were then seeded into 6-well 
plates, grown to 20–30% confluence, and infected with 
1 × 108 TU/ml lentivirus (10 μl; multiplicity of infection 
(MOI) = 5), 5 μg/ml polybrene, and complete medium. 
Cells were incubated in a 5% Co2 environment at 37 °C 
for 10 h. Media was then refreshed, and cells were cul-
tured for an additional 72 h. Media containing 0.5 μg/ml 
puromycin was then used for selection after 48 h, and 
was replaced every 1–2 days to maintain selective pres-
sure for a total of 6 days until surviving cells began 
to proliferate. Before the osteogenic differentiation of 
hMSCs, LIFR was analysed by qRT-PCR to confirm the 
effectiveness of the lentiviral transduction.

on different days (0, 3, and 6) of the osteogenic dif-
ferentiation of hMSCs, alkaline phosphatase (aLP) stain-
ing was carried out, cells were harvested to assess 
mRna and protein expression of LiF, LiFR, and osteo-
genesis-related factors (runt-related transcription factor 2 
(RunX2), osteonectin (onn), and aLP), and culture 
supernatants were collected to test the LiF levels. 

ALP staining
aLP activity was assayed with an aLP staining kit 

according to the manufacturer’s protocol (Beyotime 
Institute of Biotechnology, Shanghai, China). Briefly, 
cells were washed with phosphate-buffered solution 
(PBS) twice and fixed in 4% formalin for 20 min. The 
cells were equilibrated using aLP buffer (0.1 M naCl, 
0.1 M Tris-hCl, 50 mM MgCl2.6h2o, ph 9.5) for 5 min 
twice, and were then incubated with aLP substrate solu-
tion (5 μl BCIP and 10 μl NBT in l ml ALP buffer) at 
room temperature in the dark for 30 min, after which the 
reaction was stopped with distilled water. Finally, the 
cells were observed under a microscope (olympus, 
Tokyo, Japan).

ALP activity measurement
aLP activity was measured using a commercial aLP 

Detection Kit according to the manufacturer’s protocol 
(nanjing Jiancheng Bioengineering Ltd., nanjing, 
China). Briefly, cells were freeze-thawed from –20 °C to 
room temperature four times to release the aLP. These 
lysates were transferred to 96-well plates and incubated 
with aLP substrate at 37 °C for 30 min. Reactions were 
then stopped via addition of a stop buffer. The p-nitro-
phenol product formed by the enzymatic hydrolysis of 
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the p-nitrophenyl phosphate substrate was measured at 
520 nm using a microplate reader (Biorad, hercules, 
Ca).

Quantitative real-time PCR (qRT-PCR) analysis
Total Rna was extracted with the Trizol Reagent ac-

cording to the manufacturer’s instructions (invitrogen). 
First-strand cDna was obtained using the Reverse 
Transcription System and oligo(dT), following the man-
ufacturer’s instructions (Thermo Scientific, Waltham, 
Ma). Quantitative real-time PCR (qPCR) was per-
formed using the SYBR Premix ex Taq kit (Toyobo Co., 
osaka, Japan) in a 7300 Real-Time PCR System (aBi, 
Foster, CA), and relative quantification via the (2-ΔΔCT) 
method was used to analyse the data. endogenous 
β-actin mRNA was used as a reference control for 
mRNA quantification. Sequences of all primers are 
shown in Table 1.

Western blot analysis
Cells were lysed on ice using RiPa buffer (50 mM 

Tris (ph7.4), 150 mM naCl, 1% Triton X-100, 1% so-
dium deoxycholate, 0.1% SDS, sodium orthovanadate, 
sodium fluoride, EDTA, leupeptin). Proteins were then 
boiled in 5 × SDS sample buffer for 5 min, separated by 
electrophoresis in SDS-polyacrylamide gels, and trans-
ferred to polyvinylidene difluoride (PVDF) membranes 
(Millipore, Burlington, Ma). after this transfer, mem-
branes were blocked with skim milk and probed with 
primary antibodies. Mouse anti-LIFR antibody (1 : 1,000; 
Cat. no. ab89792; abcam, Cambridge, uK), rabbit anti-
RUNX2 antibody (1 : 1,000; Cat. No. ab23981; Abcam), 
rabbit anti-ONN antibody (1 : 500; Cat. No. ab55847; 
Abcam) and mouse anti-β-actin (1 : 2,000; Cat. No. 
ab173838; abcam) were used. anti-mouse horseradish 
peroxidase (HRP)-conjugated IgG (1 : 5,000; Cat. No. 
7076P2) and anti-rabbit HRP-conjugated IgG (1 : 5,000; 
Cat. no. 7074P2; both from Cell Signaling Technology, 
inc., Beverly, Ma) were used as secondary antibodies. 
The immune-stained protein bands were detected by che-
miluminescence. 

Quantification of LIF concentrations
 LiF protein in cell culture supernatants was collected 

and LiF concentrations were determined using an 
eLiSa kit (Senxiong Biotech, Shanghai, China). The 
assays were conducted according to the manufacturer’s 

instructions. absorbance was read at 450 nm and was 
background corrected. LiF concentrations were deter-
mined using a reference standard curve.

Statistical analysis
all data are presented as mean ± SD from three inde-

pendent measurements. SPSS v16.0 was used for all sta-
tistical analyses via one-way anoVa.  Differences 
were considered statistically significant at P < 0.05.

Results

LIFR expression during the early stage of 
osteogenic differentiation

as shown in Fig. 1, the expression of LiFR was found 
to gradually decrease during the early stage of osteo-
genic differentiation of hMSCs, suggesting that LiFR 
may play a role in osteogenic differentiation.

Effectiveness of lentiviral transduction
on day 6 of selection, the surviving puromycin-re-

sistant cells were successfully transfected, proliferating 
and showing good growth. To verify the effectiveness of 
the lentiviral transduction, transduction efficiency was 
assessed by qRT-PCR analysis. The results revealed a 
greater than 2.5-fold increase in LiFR expression in the 
overexpression group compared with the negative con-
trol group. Similarly, the LiFR siRna group showed a 

Table 1. Primer sequences used for real-time quantitative PCR

Gene symbol Forward primers Reverse primers Length (bp)
RUNX2 5‘-ggaCgaggCaagagTTTCaCC-3‘ 5‘-ggTTCCCgaggTCCaTCTaCT-3‘ 161
ONN 5‘-TCTTCCCTgTaCaCTggCagTTC-3‘ 5‘-aagCgggTggTgCaaTgC-3‘ 124
ALP 5-‘CCCCgTggCaaCTCTaTCTTT-3‘ 5-‘gCCTggTagTTgTTgTgagCaTag-3‘ 161
LIFR 5‘-agCCTCaagCaaaaCCagaa-3‘ 5‘-TTggCCTgaggTCTgTaaCC-3‘ 144
LIF 5‘-CTgTTggTTCTgCaCTggaa-3‘ 5‘-CCCCTgggCTgTgTaaTaga-3‘ 154
β-Actin 5‘-gCgagaagaTgaCCCagaTCaTgT-3‘ 5‘-TaCCCCTCgTagaTgggCaCa-3‘ 160
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Fig. 1. The expression of LiFR during osteogenesis ana-
lysed by qRT-PCR at the indicated time points 
all values are expressed as mean ± SD (X ± SD, n =3). 
*P < 0.01 vs. Day 0.
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greater than 3-fold decrease in LiFR expression com-
pared with the negative control group (Fig. 2).

ALP staining and activity
The osteogenic differentiation of hMSC cells was as-

sessed on days 0, 3, and 6 based on aLP staining. The 
results showed that cells were stained with blue-violet 
(positive cells). The LiFR-overexpressing cells showed 
weaker aLP staining and colour (Fig. 3a). in contrast, 
the LiFR siRna group exhibited a strongly positive 
staining and a deeper colour (Fig. 3B).

The activity of intracellular aLP was also investigated 
at these same time points, revealing a significant decrease 
in aLP activity in the LiFR overexpression cells relative 
to controls, with a corresponding significant increase in 
the LIFR siRNA group relative to controls. These find-
ings supported the above aLP staining results (Fig. 4).

Expression levels of key osteogenesis-related 
factors, LIF, and LIFR during osteogenic 
differentiation

as shown in Fig. 5, the expression of osteogenesis-
related factors (RunX2, aLP, and onn), LiF, and 
LiFR was assessed in each group by qRT-PCR. LiFR 
overexpression significantly suppressed osteogenic dif-
ferentiation, and the expression levels of RunX2, onn, 
and aLP were also inhibited. There was also an upward 
trend in the level of LiF mRna. LiFR siRna, in con-
trast, significantly enhanced osteogenic differentiation, 
with increased expression levels of RunX2, onn, and 
aLP. in these cells, there was also a downward trend in 
LiF mRna consistent with the decreased LiFR levels.

Protein expression of key osteogenesis-related 
factors, LIF, and LIFR during the early stage of 
osteogenic differentiation

The mRna levels of RunX2, onn, LiF and LiFR 
were all elevated in each group. Consistent with this, 
western blotting showed comparable increases in the 

corresponding protein expression levels (Fig. 6). in each 
group, LiF concentrations were also determined by 
eLiSa (Fig. 7). 

Discussion
in post-menopausal osteoporosis and senile osteopo-

rosis, the intrinsic properties of hMSCs are thought to be 
disturbed (Kim et al., 2016; Casado-Díaz et al., 2017). 
Studies showed that the osteogenic differentiation po-
tential of hMSCs decreases over time, which is an im-
portant factor in the development of osteoporosis 
(Scheideler et al., 2008; Benisch et al., 2012). Therefore, 
the study of osteogenic differentiation of hMSCs is war-
ranted in order to better understand how to treat osteo-
porosis and promote fracture healing.

it is well known that the early stage of cell differen-
tiation determines the future development of cells (Park 
et al., 2013; Martino et al., 2014; Steward and Kelly, 
2015). We initially observed that LiFR expression 
trended downward during the early stage of osteogenic 
differentiation of hMSCs (Fig. 1). This result implied 
that LiFR may play a regulatory role in osteogenesis. To 
confirm our hypothesis, we then constructed stable 
LiFR overexpression and siRna lentiviral plasmids and 
used them to transduce hMSCs (Fig. 2), maintaining el-
evated or decreased expression of LiFR, respectively.

Subsequently, aLP staining and activity measure-
ments were carried out in the early stage of osteogenic 
differentiation of hMSCs. as shown in Figs. 3a and 4a, 
LiFR-overexpressing cells exhibited weaker aLP stain-
ing and activity. in contrast, cells transduced with LiFR 
siRNA exhibited significantly enhanced ALP staining 
and activity (Figs. 3B and 4B). aLP is known to be 
linked to the promotion of calcification, and its activity 
is also one of the earliest signs of osteogenesis (Pinero 
et al., 1995). These findings thus suggested that LIFR 
emerges as a negative regulator of osteogenesis.

To further explore the effects of LiFR on the osteo-
genic differentiation of hMSCs, osteogenesis-related 
factors (RunX2, onn, and aLP) were analysed at the 
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Fig. 2. Detection of LiFR expression by qRT-PCR
all values are expressed as the mean ± SD (X ± SD, n = 3). **P < 0.01 vs. negative control group.
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mRna and protein levels. after LiFR overexpression 
and siRna-mediated knockdown in hMSCs, the ex-
pression levels of these osteogenesis-related factors 
were clearly altered during the early stage of osteogenic 
differentiation (Figs. 5 and 6). RunX2 has been shown 
to be necessary for osteogenic differentiation and bone 
formation in mesenchymal stem cells (Sun et al., 2012; 

Meng et al., 2016). RunX2 directly activates the osteo-
blast-specific expression of ONN, triggering the forma-
tion of bone matrix proteins early in the process of osteo-
genic differentiation (Liu et al., 2008). our experimental 
results showed that altering LiFR expression can lead to 
changes in the expression of these three osteogenesis-
related factors, thereby affecting the early osteogenic 
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differentiation of hMSCs. in addition, existing research 
indicates that RunX2, onn, and aLP are closely re-
lated to osteoporosis (Dalle Carbonare et al., 2009). our 
results thus confirmed a possible inherent association 
between LiFR and these diseases related to abnormali-
ties in osteogenic differentiation. 

When studying LiFR, it is important to consider the 
role of LiF. LiF plays a functional biological role via 
signalling through LiFR. at present, most studies have 
focused on LiF but not on LiFR, leading us to explore 
the relationship between the expression of both LiF and 
LiFR during the early stage of osteogenic differentia-
tion. in our study, we observed consistent changes in 
both LiF and LiFR expression during the osteogenic 
differentiation of hMSCs. after initiation of differentia-
tion, LiF expression sharply decreased and LiFR ex-
pression gradually decreased. interestingly, LiF expres-
sion was also increased upon LiFR overexpression and 
decreased upon LiFR knockdown (Fig. 5D and e; Figs. 
6 and 7), suggesting that LiFR and LiF synergistically 
suppress osteogenic differentiation of hMSCs.

it is well known that a basic function of LiF is to in-
hibit differentiation of mouse embryonic stem cells (eS) 
(natesh et al., 2015; Cherepkova et al., 2016).  Some 
studies have also shown that LiF can inhibit osteoblast 
proliferation and activity in murine MC3T3-e1 pre-os-
teoblasts (hakeda et al., 1991; Kozawa et al., 2002; Liu 
and Jiang, 2017). These related studies thus indirectly 
and strongly support our results. in addition to binding 
LiF, LiFR can also bind to a variety of cytokines, in-
cluding tumour suppressor protein M, ciliary neuro-
trophic factor, and myocardial nutrients, thereby initi-
ating a variety of downstream signalling pathways 
(Plun-Favreau et al., 2003; Wagener et al., 2014; natesh 
et al., 2015). Many of these signalling pathways are 
closely related to osteogenic differentiation, including 
MaPK and JaK-STaT signalling (Plun-Favreau et al., 
2003; huang et al., 2012; hwang et al., 2015; Luo et al., 
2017). Clearly, LiFR serves as a pivotal link between 
cytokines and signalling pathways. These studies thus 

further support that LiFR plays an important role in the 
early stage of osteogenic differentiation. 

our study thus revealed an important role for LiFR in 
regulating hMSCs during the early stage of osteogenic 
differentiation, suggesting that LiFR may be a novel 
negative regulator of osteogenic differentiation.
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