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Abstract. T-cell lymphomas (TCLs) are a rare and 
heterogeneous subgroup of non-Hodgkin lympho-
mas (NHLs), forming only 10 % of all NHL cases in 
Western countries. Resulting from their low inci-
dence and heterogeneity, the current treatment out-
come is generally unfavorable, with limited avail-
ability of novel therapeutic approaches. Therefore, 
the recent success of immune checkpoint inhibitors 
(ICIs) in cancer treatment motivated their clinical 
investigation in TCLs as well. Multiple studies showed 
promising results; however, cases of TCL hyperpro-
gression following ICI treatment and secondary 
T-cell-derived malignancies associated with ICI treat-
ment of other cancer types were also reported. In our 
review, we first briefly summarize classification of 
T-cell-derived malignancies, general anti-tumor im-
mune response, immune evasion, and immune check-
point signaling. Next, we provide an overview of im-
mune checkpoint molecule deregulation in TCLs, 
summarize available studies of ICIs in TCLs, and 
review the above-mentioned safety concerns associa
ted with ICI treatment and T-cell-derived malignan-
cies. Despite initial promising results, further studies 
are necessary to define the most suitable clinical ap-
plications and ICI therapeutic combinations with 
other novel treatment approaches within TCL treat-
ment. ICIs, and their combinations, might hopefully 
bring the long awaited improvement for the treat-
ment of T-cell-derived malignancies.

Introduction
T-cell lymphomas (TCLs) are relatively rare and 

highly heterogeneous malignant tumors. They represent 
one of many subgroups of non-Hodgkin lymphomas 
(NHLs), accounting only for 10–20 % of all NHL cases 
(10–15 % in Western countries and 15–20 % in Asian 
countries) (Vose et al., 2008; Al-Hamadani et al., 2015; 
Zhang and Dalal, 2019; Liu et al., 2022). Given their 
low incidence, population-based studies are limited. 
The TCL incidence rate keeps increasing over the last 
20 years, being 1 to 2 cases per 100,000 inhabitants per 
year (Marchi and O’Connor, 2020). Recent studies re-
ported the incidence of mature T/NK-cell lymphomas 
between 3 and 4 cases per 100,000 inhabitants per year 
in Germany (Assaf et al., 2023) and the incidence of 
TCLs between 1 and 2 cases per 100,000 inhabitants per 
year in 31 European Medicines Agency member states 
(Zhang and Dalal, 2019). TCLs most frequently develop 

at the age of 40–50 and their incidence is affected by 
ethnicity. For example, peripheral T-cell lymphomas 
(PTCLs) occur more frequently in Alaskan and Native 
Americans, while extranodal NK/T-cell lymphomas 
(ENKTLs) are very common in Asia and at Pacific is-
lands. The highest relative incidence of TCLs is within 
the African American population (Anderson et al., 1998; 
Al-Hamadani et al., 2015; Adams et al., 2016; Shah et 
al., 2019; Zain and Hanona, 2021). In contrast, TCL 
mortality is stable or even showing a slightly decreasing 
trend due to generally improved NHL treatment strate-
gies (Abouyabis et al., 2008; Thandra et al., 2021).

TCLs comprise a relatively wide group of very hete
rogeneous malignant tumors derived from T cells. Ma
lignant T-cell transformation is frequently associated 
with defects in their maturation and lineage commit-
ment. TCLs could be generally classified based on their 
clinical behavior (indolent vs. aggressive) or based on 
underlying biological characteristics, similarity to nor-
mal T-cell counterparts, and stage of differentiation 
block. Another clinically-based TCL classification re-
flects tumor localization and divides TCLs into cutane-
ous, peripheral, and extranodal lymphomas from natural 
killer cells (Ghione et al., 2018). TCLs are much less 
studied in comparison to B-cell-derived malignancies 
and are subjects of substantially lower number of basic, 
translational, as well as clinical studies and trials. This 
could be at least partially attributed to the above-men-
tioned low incidence rate and related generally lower 
interest to study rare diseases. On the other hand, search 
for better treatment options also continues in TCLs. 
Several immunotherapy-based approaches showed suc-
cess in hematological malignancies as well as in solid 
oncology. Particularly, immune checkpoint inhibitors 
caused a paradigm shift in the treatment of solid tumors. 
Therefore, we aimed to summarize the role of check-
point molecules in TCLs and to outline options of im-
mune checkpoint inhibition for TCL treatment. Intro
ductory sections on T-cell malignancies, standard TCL 
treatment approaches, and general mechanisms of tu-
mor-immune system interaction are followed by sections 
summarizing the functional role of immune checkpoint 
molecules in TCLs and the status and expectations of 
checkpoint inhibitor use in the treatment of these tumors.

T-Cell-Derived Malignancies
As mentioned above, T-cell-derived malignancies are 

a very heterogeneous group of neoplasms. The specifics 
and differences of individual tumor types primarily re-
flect the naturally wide heterogeneity of T-cell popula-
tions. This heterogeneity is further affected by a large 
range of different routes of malignant transformation 
(and associated somatic DNA alterations) and by clini-
cal appearance. Therefore, the classification of T-cell 
and NK-cell malignancies includes over 30 subtypes of 
TCLs (Alaggio et al., 2022).

T-cell-derived malignancies can be grouped into two 
major categories: precursor T-cell leukemias/lympho-
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mas and mature T-cell neoplasms. These categories are 
then further divided based on different criteria such as 
the cell of origin, morphology, or disease presentation. 
Precursor T-cell neoplasms, represented mainly by 
T-lymphoblastic leukemias/lymphomas, are aggressive 
malignancies characterized by rapid onset with often 
life-threatening symptoms. They mostly affect children 
and young adults (Bardelli et al., 2021).

Mature T-cell-derived malignancies, which are the 
focus of our review, encompass many different entities 
with a broad spectrum of clinical manifestations ranging 
from indolent chronic diseases (e.g., selected primary 
cutaneous TCLs) to aggressive systemic lymphomas with 
a poor prognosis (Iżykowska et al., 2020). Most mature 
T-cell-derived neoplasms originate from different types 
of CD4+ helper T cells, although certain types also arise 
from CD8+ cytotoxic T cells or other T-cell subtypes.

Individual TCL subtypes have distinct clinicopatho-
logical features corresponding to their genetic and mo-
lecular background. The most important and recurrent 
alterations involve deregulation of T-cell receptor and 
cytokine signaling, mutations in epigenetic regulators, 
and alterations enabling immune evasion. All these alter-
ations have a direct effect on the tumor cells-microenvi-
ronment interaction, as recently reviewed (Van Arnam 
et al., 2018). Given the outlined biological complexity, 
low frequency, and often significantly underexplored 
characteristics (in comparison to B-cell lymphomas), 
the correct TCL diagnosis is challenging and in many 
cases requires modern molecular and genomic methods 
on top of classical morphological evaluation (Alaggio et 
al., 2022). The major categories of mature T-cell-derived 
tumors according to the WHO classification are briefly 
described below and summarized in Fig. 1, keeping in 
mind certain differences in comparison to an alternative 
International Consensus Classification of lymphoid ma-
lignancies (Campo et al., 2022).

Mature T-cell leukemias
Mature T-cell leukemias form a group of rare diseases 

with primary manifestation in the blood/bone marrow 
compartment (Herling et al., 2004). T-cell prolympho-
cytic leukemia (T-PLL) is an aggressive neoplasm often 
presenting itself with high lymphocytosis and hepato-
splenomegaly. Hallmark alterations in T-PLL are gene 
rearrangements involving the T-cell leukemia/lympho-
ma 1 (TCL1) family of proteins and defects in DNA 
damage response pathways (Schrader et al., 2018).

In contrast, adult T-cell leukemia (ATLL, 10 % of 
TCL, < 1 % of all lymphomas) develops from human 
T-cell leukemia virus 1 (HTLV-1)-infected cells after a 
long latency period needed for accumulation of addi-
tional genetic events. It is the only retroviral-induced 
cancer in humans. TCR signaling activation and im-
mune evasion are critical events within ATLL pathogen-
esis (having also prognostic implications) (Vose et al., 
2008; Kataoka et al., 2018).

Chronic antigenic stimulation and defective Fas-
mediated apoptosis appear to be drivers of T-large gran-

ular lymphocytic leukemia (T-LGLL) (Yang et al., 
2008). Common activating mutations of STAT3 and as-
sociated reactive cytopenias often cause symptoms re-
quiring treatment (Barilà et al., 2020), but the overall 
clinical course is usually indolent.

Sézary syndrome (SS), a leukemic form of cutaneous 
T-cell lymphoma, could be usually distinguished from 
other T-cell leukemias by association with erythroder-
ma. SS is closely related to other subtypes of cutaneous 
TCLs (e.g., mycosis fungoides), but it is a distinct entity 
that may originate from a specific population of central 
memory T cells (Campbell et al., 2010).

Primary cutaneous T-cell lymphomas
Primary cutaneous T-cell lymphomas (CTCLs) are 

much more frequent than their B-cell counterparts, rep-
resenting about 80 % of primary cutaneous lymphoma 
cases (Dobos et al., 2020). Most CTCLs are indolent but 
progressive diseases with no available cure, except for 
allogeneic stem cell transplantation (Willemze et al., 
2019; Kempf and Mitteldorf, 2021).

The most prevalent CTCL subtype (two thirds of 
CTCL cases, < 5 % of all lymphomas) worldwide is my-
cosis fungoides (MF) (Dobos et al., 2020; Hristov et al., 
2023), a chronic clonal proliferation of skin-resident ef-
fector memory T cells with characteristic immunophe-
notype (Campbell et al., 2010). MF has also a very typi-
cal clinical evolution (from formation of patches, through 
plaques, to tumors and extracutaneous spread). MF 
treatment reflects the clinical stage and is stage-adapted 
(Willemze et al., 2018). Molecular genetic studies of 
MF and SS showed high genomic instability that results 
in a complex karyotype with frequent focal deletions 
(Choi et al., 2015). It suggests a critical role of UV ra-
diation in the pathogenesis of these two lymphomas 
(Jones et al., 2021).

Primary cutaneous CD30+ T-cell lymphoproliferative 
disorders include lymphomatoid papulosis (LyP) and 
primary cutaneous anaplastic large cell lymphoma 
(C-ALCL). These are very close entities with an over-
lapping spectrum of cases. Prognosis of LyP as well as 
C-ALCL is excellent despite their morphological resem-
blance to their systemic counterparts (Bekkenk et al., 
2000). Other CTCL subtypes are generally very rare en-
tities.

Nodal T-follicular helper cell lymphomas
The family of nodal T-follicular helper cell lympho-

mas includes tumors with immunophenotypic and tran-
scriptional profiles resembling normal follicular helper 
T cells (de Leval et al., 2007; Huang et al., 2009). All 
three histological subtypes, angioimmunoblastic (for-
merly angioimmunoblastic T-cell lymphoma – AITL, 
19 % of PTCL, 4 % of all lymphomas), follicular, and 
not otherwise specified, have unfavorable outcome (Vose 
et al., 2008). These lymphomas frequently develop on 
the background of clonal hematopoiesis and, aside from 
other lymphoma recurrent DNA alterations, share muta-
tions in DNA and histone methylation regulators and 
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Fig. 1. The WHO classification of T-cell-derived malignancies (adapted from Alaggio et al., 2022). The most frequent 
entities are highlighted in blue. Entities where studies with checkpoint inhibitors were reported are marked.
Abbreviations: ALCL – anaplastic large cell lymphoma, ALK – anaplastic lymphoma kinase, ATLL – adult T-cell leuke-
mia, EATL – enteropathy-associated T-cell lymphoma, EBV – Epstein-Barr virus, ENKTL – extranodal NK/T-cell lym-
phoma, LyP – lymphomatoid papulosis, MEITL – monomorphic epitheliotropic intestinal T-cell lymphoma, MF – myco-
sis fungoides, NK – natural killer, NOS – not otherwise specified, PTCL – peripheral T-cell lymphoma, SS – Sézary 
syndrome, TCL – T-cell lymphoma, T-LGLL – T-large granular lymphocytic leukemia, T-PLL – T-prolymphocytic leuke-
mia, TFH – T follicular helper.
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members of the TCR signaling pathway (Vallois et al., 
2016; Maria Pamela et al., 2017; Lewis et al., 2020).

Intestinal T-cell lymphomas
Enteropathy-associated T-cell lymphoma (EATL) and 

monomorphic epitheliotropic intestinal T-cell lympho-
ma (MEITL) are both rare and aggressive intestinal 
T-cell lymphomas with poor prognosis, high chemore-
sistance, and short overall survival. EATL is associated 
with refractory celiac disease and differs from MEITL at 
the level of immunophenotype and spectrum of genom-
ic alterations (Mutzbauer et al., 2018; Veloza et al., 
2022). In contrast, indolent T-cell lymphoma of the gas-
trointestinal tract has a protracted clinical course (Mar
golskee et al., 2013).

Hepatosplenic T-cell lymphomas
Patients with rare hepatosplenic T-cell lymphomas 

have a very bad prognosis with inevitable disease pro-
gression and lethal outcome. No standard of care is 
available to date. Typical symptoms include weakness, 
fever, and organomegaly and are frequently accompa-
nied by cytogenetic abnormalities and associated cyto-
penias. Malignant cells usually harbor γδ TCR (Yabe et 
al., 2016).

Anaplastic large cell lymphomas
Systemic anaplastic large cell lymphomas (ALCLs, 

approximately 2 % of all lymphomas) can be divided 
into two subgroups based on the rearrangement and con-
sequent expression of anaplastic lymphoma kinase 
(ALK). ALK is most frequently overexpressed due to 
translocation t(2;5)(p23;q35), leading to NPM1-ALK 
gene fusion (Pittaluga et al., 1997). ALK-positive ALCL 
usually affects young individuals and has favorable 
prognosis. ALK-negative ALCL is a more heteroge-
neous disease with emerging prognostically relevant ge-
netic subtypes (Parrilla Castellar et al., 2014; Onaindia 
et al., 2019). ALK+ as well as ALK− ALCLs are morpho-
logically variable; however, the so-called “hallmark 
cells” are usually present (Benharroch et al., 1998). By 
definition, all cases also express CD30 (Tsuyama et al., 
2017; Iżykowska et al., 2020; Alaggio et al., 2022). A 
specific entity is breast implant-associated ALCL – usu-
ally a non-invasive neoplasm arising around breast im-
plants (Di Napoli et al., 2019).

Peripheral T-cell lymphomas, not otherwise 
specified

The group of peripheral T-cell lymphoma, not other-
wise specified (PTCL, NOS, 26 % of all PTCLs) has a 
significant molecular heterogeneity and is characterized 
by aggressive clinical behavior that is associated with 
poor prognosis. It remains a diagnosis per exclusionem 
despite multiple new molecular subtypes of T-cell-
derived malignancies (Vose et al., 2008; Heavican et al., 
2019).

Epstein-Barr virus-positive NK/T-cell lymphomas

Most cases of EBV+ NK/T-cell lymphomas occur in 
Asia and Latin America, forming approximately 10 % 
of PTCLs (Vose et al., 2008; Haverkos et al., 2016). 
Extranodal NK/T-cell lymphoma (ENKTL) predomi-
nantly involves the upper aerodigestive tract and adja-
cent sites. The role of Epstein-Barr virus (EBV) infec-
tion in the pathogenesis of ENKTL is not completely 
understood (Haverkos et al., 2017). However, the serum 
viral DNA load is predictive of the patients’ outcome – a 
detectable level of EBV-DNA reflects worse clinical 
stage, performance status, and survival (Suzuki et al., 
2011). Nodal EBV+ NK/T cell lymphoma is a novel and 
rare entity with a unique genetic background and dismal 
prognosis (Wai et al., 2022).

EBV+ T- and NK-cell lymphoid proliferations 
and lymphomas of childhood

EBV+ T- and NK-cell lymphoid proliferations and 
lymphomas of childhood include various (localized or 
systemic) forms of chronic active EBV disease and, e.g., 
EBV+ T-cell lymphoma of childhood, all recently re-
viewed (Cohen et al., 2020).

Standard T-Cell Lymphoma Treatment 
Approaches

General T-cell lymphoma treatment approaches are 
overviewed in Fig. 2. There are multiple therapeutic ap-
proaches used in TCL treatment. Chemotherapy regi-
mens are generally analogous to those commonly used 
in B-cell-derived lymphomas (e.g., CHOP, CHOEP, 
DA-EPOCH). Interestingly, it was reported that the cy-
clophosphamide, doxorubicin, and oxaliplatin combina-
tion could promote immunogenic cell death and (along 
with vincristine) increase MHC I expression and anti-
gen presentation. This results in enhanced anti-tumor 
immunity (Chen and Emens, 2013; Neuwelt et al., 2020; 
Chen et al., 2022). Apart from standard chemotherapy, 
specific treatment adjustment is necessary in certain 
situations. For example, use of non-anthracycline regi-
mens is required in ENKTL because of poor anthracy-
cline tissue bioavailability (Yamaguchi et al., 1995, 
2018; Yong et al., 2003; Lee et al., 2006; Jeong, 2020; 
Zain and Hanona, 2021). The use of autologous stem 
cell transplantation is being continuously discussed and 
could be recommended in disseminated chemo-sen
sitive TCLs (Nawa et al., 1999; Sasaki et al., 2000; 
Kouzaki et al., 2004; Fox et al., 2015; Yhim et al., 2015; 
Jeong, 2020). Allogeneic hematopoietic stem cell trans-
plantation is the only potentially curative method for 
relapsed/refractory (R/R) TCLs. However, it is fre-
quently difficult to achieve pre-transplantation complete 
remission (Murashige et al., 2005; Yamaguchi et al., 
2018; Zain and Hanona, 2021). Radiotherapy (RT) is 
mainly used within the treatment of localized TCL forms, 
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e.g., local forms of ENKTL nasal type (along with che-
motherapy within a first-line treatment). However, RT 
use in TCL treatment is still being discussed (Kim et al., 
2000; You et al., 2004; Jiang et al., 2012; Wang et al., 
2013; Yamaguchi et al., 2018; Jeong, 2020). Standard 
TCL treatment strategies (including targeted inhibitors) 
were recently summarized in detail by Ghione et al. 
(2018).

Importantly, multiple additional targeted inhibitors 
are used or currently evaluated within clinical trials, 
specifically, ALK inhibitors (e.g., crizotinib, effective in 
ALK+ ALCL), phosphoinositide 3-kinase (PI3K) in-
hibitors, JAK/STAT pathway inhibitors, DNA methyl-
transferase inhibitors (DNMTi), histone deacetylase in-
hibitors (HDACi), or indoleamine 2,3-dioxygenase 1 
(IDO1) inhibitors (Fantin et al., 2008; Mossé et al., 2013, 
2017; Prokoph et al., 2018; Torossian et al., 2019; Iży
kowska et al., 2020; Zain and Hanona, 2021). Examples 
of currently evaluated inhibitors include HDACi vori-
nostat (effective in STAT3-mutated cases), belinostat, or 
romidepsin (more selective HDACi), and JAK kinase 
inhibitor ruxolitinib (Karube et al., 2013; Coiffier et al., 
2014; O’Connor et al., 2015; McEachron et al., 2016; 
Yamaguchi et al., 2018; Iyer et al., 2019; Jeong, 2020; 
Zain and Hanona, 2021).

Immunotherapy of TCLs is mostly used within clini-
cal trials and is mainly limited to monoclonal antibodies 
and immunomodulatory drugs (including checkpoint 
inhibitors that will be discussed in a separate section 
later). Alemtuzumab is an anti-CD52 monoclonal anti-
body that blocks T-cell activation and proliferation. It is 

used as a first-line therapy of T-PLL. Brentuximab vedo-
tin (BV), an anti-CD30 monoclonal antibody covalently 
linked with microtubule toxin monomethyl auristatin E 
(widely used in Hodgkin lymphoma), is effective in sev-
eral types of PTCL (ALCL, CTCL CD30+) and used in 
combination with chemotherapy (Horwitz et al., 2014, 
2019; Iżykowska et al., 2020; Neuwelt et al., 2020; Zain 
and Hanona, 2021; Chen et al., 2022). Mogamulizumab, 
an anti-CCR4 antibody, which activates cellular cyto-
toxicity, is used in relapsed ATLL and CTCL (Kim et al., 
2018; Iżykowska et al., 2020; Zain and Hanona, 2021). 
Alemtuzumab, BV, and mogamulizumab were already 
approved for TCL treatment (Ghione et al., 2018; Iży
kowska et al., 2020). Daratumumab, anti-CD38 anti-
body, showed a therapeutic effect in (R/R) ENKTL 
(Wang et al., 2015). Anti-CD25 and anti-CD47 antibodies 
are in clinical trials in PTCL and CTCL (Prince et al., 
2010; Folkes et al., 2018; Ghione et al., 2018; Zain and 
Hanona, 2021). Other immunotherapy-based approaches 
include the use of interferon alpha (INF-α) in CTCL and 
ATLL (Hodson et al., 2011; Ghione et al., 2018; Zain 
and Hanona, 2021). Autologous cytotoxic T-lympho
cytes (CTLs) targeted against latent membrane proteins 
(LMPs) were very effective in a clinical trial involving 
EBV-positive lymphomas. Almost all patients achieved 
long-term complete remission (Bollard et al., 2014; 
Jeong, 2020). CTLs were also used as a consolidation 
treatment following chemoradiotherapy in relapsed 
EBV+ lymphomas, and additional clinical trials are on-
going (Ghione et al., 2018; Prockop et al., 2020; Wai et 
al., 2022).

Fig. 2. Overview of T-cell lymphoma treatment approaches.
Abbreviations: ALK – anaplastic lymphoma kinase, CHOP – cyclophosphamide, doxorubicin, vincristine, prednisolone, 
CHOEP – cyclophosphamide, doxorubicin, vincristine, etoposide, prednisolone, DA-EPOCH – dose-adjusted etoposide, 
prednisolone, vincristine, cyclophosphamide, doxorubicin, DNMTi – DNA methyltransferase inhibitors, IDO1i – indole-
amine 2,3- dioxygenase 1 inhibitors, HDACi – histone deacetylase inhibitors, JAK/STAT – Janus kinase/signal transduc-
ers and activators of transcription, PI3K – phosphoinositide 3-kinase, R/R – relapsed/refractory, TCL – T-cell lymphoma.
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Anti-Tumor Immune Response

The immune system has generally been accepted as a 
critical component of the anti-tumor defense system 
(Calì et al., 2017). Therefore, the idea of exploiting the 
host immune system for cancer treatment has been con-
sidered for a long time. However, only recent advances 
in our understanding of complex and dynamic interac-
tions between the host immune system and tumor cells 
have permitted the development of successful immuno-
therapies that have revolutionized anti-cancer treatment. 
Identification of new druggable targets has allowed mo
dulation and/or activation of the anti-tumor immune re-
sponse (Waldman et al., 2020). Before proceeding to over-
view immunotherapeutic approaches in T-cell lymphomas 
(focusing on immune checkpoint inhibitors), we would 
like to briefly summarize the key aspects of anti-tumor 
immunity. We will focus specifically on the role of T 
cells (as the key players and regulators of the anti-tumor 
immune response), with a particular emphasis on im-
mune checkpoints and tumor cell characteristics allow-
ing them to evade the host immune response (Fig. 3).

For an effective anti-tumor immune response, tumor-
released antigens need to be processed by antigen-pre-
senting cells (APCs), with consequent priming and acti-
vation of T cells. Subsequently, the anti-tumor T cells 
must infiltrate the tumor and be locally activated. Anti
gen-specific effector T cells are then capable of elimi-
nating the tumor cells. To be antigenic, tumor cells need 
to aberrantly express neoantigens (e.g., mutated pro-
teins), proteins expressed only in immune privileged 
sites, or highly tissue-specific antigens. A critical step of 
the anti-tumor immune response occurs with the activa-
tion of naïve T lymphocytes via interaction of their T-cell 
receptor (TCR) with a specific major histocompatibility 
complex (MHC) on APCs (macrophages, dendritic 
cells, and B cells) (Toes et al., 1999; Lee et al., 2020). 
This interaction is accompanied by interaction of addi-
tional co-stimulatory receptors and ligands on the sur-
face of APCs and T cells (Muenst et al., 2016).

TCR-tumor peptide/MHC interactions-mediated acti-
vation of naïve T cells promotes their differentiation 
into specific types of T cells, mainly CD8+ cytotoxic 
T lymphocytes (CTLs) or CD4+ T helper cells (Th cells). 

Fig. 3. T-cell-mediated anti-tumor immune response. Naïve T cells recognize antigens presented by an APC through the 
MHC in a TCR-dependent manner. This results in differentiation of T cells into cytotoxic T cells, Th1, or Th2 cells. Cyto
toxic cells trigger tumor cell death via secretion of perforins and granzymes or by promoting Fas-mediated apoptosis. Th1 
cells secrete cytokines that mediate destruction of tumor cells. Th2 cells recruit B cells and secrete cytokines that mediate 
humoral anti-tumor immunity.
Abbreviations: APC – antigen-presenting cell, INF-γ – interferon gamma, IL – interleukin, MHC – major histocompatibili
ty complex, TCR – T-cell receptor, TNF-α – tumor necrosis factor alpha, Th1 cell – type 1 helper cell, Th2 cell – type 2 
helper cell.
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Importantly, CTLs could directly elicit their anti-tumor 
activity through granzyme/perforin pathway-associated 
cytotoxicity or Fas protein/Fas ligand (Fas/FasL)-me
diated apoptosis (Zhang and Bevan, 2011; Hay and 
Slansky, 2022; Zöphel et al., 2022). Since CTLs are 
considered among the most effective mediators of anti-
tumor immunity, they are well suited for immunothera-
peutic intervention (Farhood et al., 2019; Raskov et al., 
2021).

In addition to CTLs, CD4+ T cells also contribute to 
anti-tumor immunity (Kravtsov et al., 2022). Th cells 
can further differentiate into multiple subsets (including 
Th1, Th2, Th17, Th9, Treg, and Tfh). This differentia-
tion is tightly regulated and controlled by the diverse 
landscape of cytokines, available co-stimulatory mole-
cules, and antigen presentation (Basu et al., 2021). Addi
tionally, individual subsets of Th cells can shape the 
anti-tumor immunity in different ways (Silva et al., 2023).

Th1 and Th2 classes of CD4+ T cells are the best-
characterized and predominant Th subgroups with dis-
tinct functions. Th1 cells contribute to the anti-tumor 
immunity in a complex manner. By producing interleu-
kin 2 (IL‑2), interferon gamma (INF‑γ), and tumor ne-
crosis factor alpha (TNF-α), Th1 cells reinforce the tu-
mor-suppressing activity of CTLs and NK cells and 
contribute to upregulation of MHC expression on APCs 
(Zhang et al., 2014; Lee et al., 2021).

In contrast, the role of Th2 cells within anti-tumor im-
munity is less straightforward. Th2 cells secrete cyto-
kines such as IL‑4, IL‑5, and IL‑13, which modulate the 
humoral immune response (Junttila, 2018; Kokubo et 
al., 2022; Silva et al., 2023). Importantly, Th2 cells pro-
mote the anti-tumor activity of macrophages and eosin-
ophils (Jacenik et al., 2023). Th2 cells also express the 
CD40 ligand (CD40L). CD40L can consequently bind 
to CD40 expressed on the cell surface of B cells, pro-
moting B-cell activation and supporting the complex 
anti-tumor immune response (Chatzigeorgiou et al., 
2009). On the other hand, Th2 cell-produced cytokines 
(such as IL-17) might promote tumorigenesis by their 
proangiogenic effects and negative regulation of cell-
mediated anti-tumor response (Basu et al., 2021).

Immune Checkpoint Signaling and Its 
Deregulation in T-Cell-Derived Malignancies

During the tumor development and progression, the 
above-described powerful anti-tumor immune response 
is counteracted by the “immune evasion” process. Con
stant anti-tumor selection pressure leads to evolution of 
various mechanisms and/or tumor cell characteristics to 
evade the host immune system detection and reaction. 
These might include loss of antigenicity, immunosup-
pressive tumor microenvironment (TME), or overex-
pression of immune checkpoint molecules (Beatty and 
Gladney, 2015; Kim and Cho, 2022). Immunosuppressive 
TME, which is frequently mediated by regulatory T cells 
(Tregs) and tumor-associated macrophages (TAMs), is 
associated with T-cell anergy, suppression of T- and 

B-cell activation, impairment of antigen presentation 
process, or microenvironment matrix remodeling (Fig. 4) 
(Battaglia et al., 2006; Kondelkova et al., 2010; Muenst 
et al., 2016; Bennani and Ansell, 2019; Ohue and Nis
hikawa, 2019).

Upregulation of immune checkpoint molecules is a 
very important mechanism of immune evasion (Drake 
et al., 2006). These ligand-receptor pairs are powerful 
inhibitors of immune response (Jutz et al., 2017; Zhang 
and Zheng, 2020). Programmed cell death protein 1 
(PD‑1) and cytotoxic T-lymphocyte-associated protein 4 
(CTLA‑4) are the two most well-known and character-
ized immune checkpoint molecules expressed on multi-
ple types of immune cells. Their widespread expression 
determines their strong capability of immune response 
regulation (Buchbinder and Desai, 2016). The overview 
of immune checkpoint signaling is provided in Fig. 5. 
Multiple studies have also identified deregulation of im-
mune checkpoint molecules in T-cell-derived malignan-
cies, which might be an integral part of TCL develop-
ment.

PD-1 – PD-L1/PD-L2 signaling
The PD‑1 receptor is expressed by almost all types of 

immune cells including activated T and B cells. It binds 
programmed death ligand 1 (PD-L1) and programmed 
death ligand 2 (PD-L2). PD-L1 is mainly expressed by 
B and T lymphocytes, dendritic cells, macrophages, as 
well as by certain non-immune system tissues (e.g., pul-
monary, hepatic, or splenic cells). PD-L2 expression is 
limited to a few distinct subtypes of dendritic cells and 
macrophages (Keir et al., 2008; Jiang et al., 2019).

PD-1/PD-L1 or PD-L2 interaction triggers phospho
rylation of intracellular PD-1 immunoreceptor tyrosine-
based switch motif (ITSM) and immunoreceptor ty
rosine-based inhibitory motif (ITIM) and leads to 
recruitment of phosphatases such as Src homology re-
gion 2 domain-containing phosphatase-2 (SHP2), op-
posing the effect of TCR and CD28 activation signals 
(Menter and Tzankov, 2018; Sharpe and Pauken, 2018). 
Downstream signaling consequences include inhibi-
tion of phosphatidylinositol 3-kinase/protein kinase B 
(PI3K/AKT) and Ras/ERK signaling pathways, inhibi-
tion of TCR-mediated signal, inactivation of nuclear 
factor kappa-light-chain-enhancer of activated B-cells 
(NF-κB) and activator protein 1 (AP1) signaling path-
ways, and reduction of CD28 signaling (Sheppard et al., 
2004; Sharpe and Pauken, 2018; Antonangeli et al., 
2020). Generally, PD-1 activation leads to decreased 
T-cell activation and reduction of immune cell survival, 
proliferation, and production of cytokines (Sharpe and 
Pauken, 2018).

Physiologically, PD-1/PD-L1 or PD-L2 interactions 
help to maintain the equilibrium between activated and 
deactivated T cells (Shi et al., 2013). On the other hand, 
as mentioned above, PD‑L1/2 overexpression in tumor 
cells supports T-cell exhaustion and immunosuppres-
sion (Querfeld et al., 2018). Moreover, it has been re-
ported that the PD‑L1 overexpression also suppresses 
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anti-tumor immunity by blocking antibody-dependent 
cellular phagocytosis (ADCP) executed by macropha
ges (Su et al., 2018). Studies of PD1 and PD-L1/PD-L2 
deregulation in T-cell-derived malignancies are summa-
rized below and overviewed in Table 1.

PD-1 in T-cell lymphoma
PD-1, a membrane receptor expressed on activated 

T cells, inhibits the immune response in peripheral tis-
sues and promotes self-tolerance. It could be detected in 
the majority of T-follicular helper cell lymphomas, but 
also in PTCL-NOS, ALCL, diffuse large B-cell lympho-
ma (DLBCL), Hodgkin lymphoma, or follicular lym-
phoma (Krishnan et al., 2010; Neuwelt et al., 2020; 
Chen et al., 2022).

T-cell lymphomas frequently harbor deletions involv-
ing the genomic locus of PD-1-encoding gene PDCD1. 
In consequence, this deletion supports proliferation 
of malignant T cells. Notably, the highest frequency 
of PDCD1 deletions was detected in advanced stages of 
CTCL (Wartewig et al., 2017). Interestingly, it was 

shown that EBV-positive lymphomas have higher PD-1 
surface expression, leading to evasion from the immune 
response (Neuwelt et al., 2020; Hatic et al., 2021; Chen 
et al., 2022). In ENKTL, tumor cell expression of PD-1 
is very low but relatively frequent in TME cells (up to 
36 % of cases) (Jo et al., 2017; Nagato et al., 2017). In 
ATLL tumor cells, PD-1 is expressed in about 20 % of 
cases (Kozako et al., 2009). In SS, malignant cells ex-
press PD-1 in over ¾ of cases (Decroos et al., 2021). 
This confirms the findings of Saulite et al. (2020) re-
porting that PD-1 expression is much stronger in tumor 
cells in comparison to non-tumor CD4+ T cells.

PD-1 could have diagnostic significance, e.g., tumor 
cell-associated PD-1 expression is higher in SS than MF 
(Cetinözman et al., 2012). PD-1 was also evaluated as 
an important biomarker. PD-1-positive peripheral blood 
mononuclear cells (PBMCs) in PTCL were character-
ized by abnormal expression of innate immunity genes, 
overexpression of CTLA-4, downregulation of INF-γ, 
and cytotoxicity defects (Zhang et al., 2019; Chen et al., 
2022). In CTCL, skin lesion-derived tumor-infiltrating 

Fig. 4. Immunosuppressive tumor microenvironment and immune checkpoints. Immunosuppressive effects of tumor-as-
sociated macrophages (TAMs) are mediated by promoting angiogenesis, triggering tissue remodeling, preventing release 
of pro-inflammatory cytokines that activate B and T cells, secreting anti-inflammatory cytokines, and via chemokine-
mediated activation of Treg cells. Additionally, immunosuppression is mediated by immune checkpoints, including PD-1/
PD-L1, CTLA-4 and LAG-3 pathways.
Abbreviations: APC – antigen-presenting cell, CTLA‑4 – cytotoxic T-lymphocyte-associated protein 4, Lag-3 – lympho-
cyte-activation gene 3, MHC II – major histocompatibility complex class II, PD‑1 – programmed cell death protein 1, 
PD‑L1 – programmed death ligand 1, TAM – tumor-associated macrophage, TCR – T-cell receptor, VEGF – vascular 
endothelium growth factor.
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Fig. 5. Overview of T-cell intracellular signaling related to immune checkpoint molecules. PD-1/PD-L1(PD-L2), CTLA-
4/CD86(CD80), TIGIT/CD155(CD112) and LAG-3 intracellular signaling transduction inhibits TCR signaling. Further-
more, PD-1/PD-L1(PD-L2), CTLA-4/CD86(CD80), TIGIT/CD155(CD112), LAG-3, and OX40/OX40L signaling mod-
ulates downstream survival- and activation-regulating PI3K/AKT, MAPK, ERK, and NF-κB pathways maintaining the 
balance between activated and non-activated T cells. Inhibitory (PD-1/PD-L1(PD-L2), CTLA-4/CD86(CD80), TIGIT/
CD155(CD112) and LAG-3 pathways) and stimulatory (OX40/OX40L pathway) immune checkpoint molecules fine-tune 
the immune response, which makes them a promising target for pharmacological interventions in cancer. 
Abbreviations: AKT – protein kinase B, APC – antigen-presenting cell, CTLA‑4 – cytotoxic T-lymphocyte-associated 
protein 4, ERK – extracellular signal-regulated kinase, ITIM – immunoreceptor tyrosine-based inhibitory motif, ITSM – 
immunoreceptor tyrosine-based switch motif, LAG-3 – lymphocyte-activation gene 3, MAPK – mitogen-activated pro-
tein kinase, MHC II – major histocompatibility complex class II, NF-κB – nuclear factor kappa-light-chain-enhancer of 
activated B-cells, PD‑1 – programmed cell death protein 1, PD‑L1 – programmed death ligand 1, PI3K – phosphoino
sitide 3-kinase, SHP2 – Src homology 2 domain-containing protein tyrosine phosphatase, TCR – T-cell receptor, TIGIT – 
T-cell immunoreceptor with Ig and ITIM domains, TRAFs – tumor necrosis factor receptor-associated factors.

T cells have higher expression of PD-1 (and other im-
mune checkpoint molecules) in comparison to controls. 
This difference was further enhanced in advanced stage 
disease and associated with activated T-cell exhaustion 
(Querfeld et al., 2018; Neuwelt et al., 2020).

Taken together, PD-1 expression on tumor cells and 
tumor-infiltrating immune cells is highly variable and 
depends on the type of T-cell malignancy. More studies 
are needed to exactly define its role in tumor develop-
ment or its usability as a biomarker.

PD-L1 in T-cell lymphoma
PD-L1 interacts with PD-1 to downregulate the adap-

tive anti-tumor immunity (Doroshow et al., 2021). PD-L1 
can be upregulated by INF-γ (Kataoka et al., 2015; 
Takeuchi et al., 2021) and JAK/STAT signaling (Taba
nelli et al., 2019; Chen et al., 2022), and its expression, 

along with PD-L2, can be increased by viral infection 
(Cao et al., 2019; Neuwelt et al., 2020). In tumor cells, 
overexpression of PD-L1 is one of the frequent mecha-
nisms of immune evasion. Similarly to PD-1, PD-L1 
expression and its levels are extremely variable in 
T-cell-derived tumors. Chen et al. (2013) showed that 
two thirds of ENKTL cases were associated with sig-
nificant expression of PD-L1 in tumor cells. These data 
are supported by Panjwani et al. (2018), who demon-
strated PD-L1 expression in 39 % of ENKTL-NT cases 
in malignant cells, as well as in the TME (19 %). In 
other ENKTL studies, PD-L1 expression was observed 
even more frequently (in approximately 80 %) in both 
malignant and tumor-infiltrating cells (Jo et al., 2017). 
In ENKTL, the serum levels of PD-L1 and its expres-
sion in tumor tissues are generally considered a marker 
of shorter progression-free survival (PFS), overall sur-
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Table 1. Deregulation of PD-1 and PD-L1/PD-L2 in T-cell-derived malignancies

Tumor type Finding Reference
T-lymphoblastic 
lymphoma/leukemia No expression of PD-L1 and PD-L2 in tumor or TME cells (Panjwani et al., 2018)

ATLL PD-L1 expression in TME stromal cells is a prognostic marker (good prognosis)
PD-L1 expression in tumor cells is a marker of poor prognosis (Miyoshi et al., 2016)

ATLL PD-1 is expressed in tumor cells in 20 % of cases (Kozako et al., 2009)
CTCL Frequent mutations of PDCD1 in tumor cells (Wartewig et al., 2017) 
MF and SS Higher PD-1 expression in malignant T cells in SS than MF (Cetinözman et al., 2012)

SS

High PD-1 expression in blood CD4+ T cells
Lower PD-L1 expression in blood CD4+ T cells compared with healthy 
individuals
Low PD-L2 expression in blood CD4+ T cells; T lymphocytes in the affected 
skin express PD-1 excessively, PD-L1 slightly, and do not express PD-L2

(Saulite et al., 2020)

SS PD-1 expression in tumor tissue in 76 % of cases
PD-L1 expression is observed in all cases both in tumor and TME cells (Decroos et al., 2021)

AITL PD-L1 and PD-L2 are expressed in malignant and TME cells in the same 
proportion of cases (80 % and 5 %, respectively) (Panjwani et al., 2018)

PTCL High PD-L1 expression in tumor tissue, suggested as a prognostic marker (Zhao et al., 2019)

PTCL-NOS
PD-L1 is expressed in tumor and TME cells (26 % and 9 %, respectively)
PD-L2 expression in malignant cells is not frequent (2 %)
No PD-L2 expression in the TME

(Panjwani et al., 2018)

ENKTL PD-L1 expression in tumor cells in 67 % of cases (Chen et al., 2013)
ENKTL Elevated sPD-L1 is a marker of early relapse and poor prognosis (Wang et al., 2016)

ENKTL
PD-L1 expression in tumor and TME cells in about 80 % of cases
PD-1 expression in malignant and TME cells in 1.2 % and 11.4 % of cases, 
respectively

(Jo et al., 2017)

ENKTL
PD-L1 expression in tumor cells and TIMs
PD-1 expression in mononuclear cells in 36 % of cases, high sPD-L1 serum 
levels

(Nagato et al., 2017)

ENKTL
PD-L1 is expressed in tumor and TME cells in 39 % and 19 % of cases, 
respectively
PD-L2 is not expressed in malignant or TME cells

(Panjwani et al., 2018)

Abbreviations: AITL – angioimmunoblastic T-cell lymphoma, ATLL – adult T-cell leukemia, CTCL – cutaneous T-cell lymphoma, 
ENKTL – extranodal NK/T-cell lymphoma, nasal type, MF – mycosis fungoides, PD-1– programmed cell death protein 1, PD-L1 – 
programmed death ligand 1, PTCL – peripheral T-cell lymphoma, PTCL-NOS – peripheral T-cell lymphoma, not otherwise specified, 
sPD-L1 – soluble programmed death ligand 1, SS – Sézary syndrome, TIM – tumor-infiltrating macrophage, TME – tumor microenvi-
ronment.

vival (OS), and disease progression or early relapse 
(Yamaguchi et al., 2018; He et al., 2021). Elevated cir-
culating concentrations of sPD-L1 observed in ENKTL 
are considered predictive biomarkers of early relapse 
and unfavorable outcome (Wang et al., 2016; Nagato et 
al., 2017). On the other hand, PD-L1 expression in both 
malignant and non-malignant cells in ENKTL was 
linked to better prognosis (Kim et al., 2016). Links be-
tween the level of PD-L1 expression in ENKTL and the 
favorable clinical outcomes have been confirmed in a 
recently published meta-analysis (Li et al., 2023).

Furthermore, in PTCL-NOS, PD-L1 is expressed in 
tumor cells in 26 % of cases, while its expression in 
TME is detectable only in 9 % of cases (Panjwani et al., 
2018). Similar expression of PD-L1 was found in tumor 
and TME cells (in 80 % of cases for both) in AITL 
(Panjwani et al., 2018). At the same time, neither malig-

nant nor TME cells express this protein in T-lympho
blastic lymphoma/leukemia (Panjwani et al., 2018). In 
contrast to T-lymphoblastic lymphoma/leukemia, PD-L1 
expression is omnipresent in malignant and TME cells 
in SS (Decroos et al., 2021). Conversely, lower PD-L1 
expression in blood CD4+ T cells is detected in SS pa-
tients in comparison to healthy individuals (Saulite et 
al., 2020). PD-L1 was highly expressed in ALCL cell 
lines in comparison to its low expression in T-ALL cell 
lines. Furthermore, no PD-L1 expression was found in 
SS cell lines (Andorsky et al., 2011). PD-L1 and PD-1 
expression was also reported in both types of ALCL 
(ALK+ and ALK−) and was linked to STAT3 activation. 
Frequent PD-L1 overexpression and its copy number 
variants were detected in breast-implant-associated 
ALCL (Tabanelli et al., 2019).
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Additionally, PD-L1 is expressed in PTCL and CTCL 
mainly on cellular components of the TME. PD-L1 ex-
pression in tumor and TME cells was suggested as a 
prognostic marker in PTCL and ATLL. PD-L1 expres-
sion on tumor cells was a poor prognostic marker. In 
contrast, PD-L1 positivity of tumor-infiltrating cells 
was a positive prognostic marker (Miyoshi et al., 2016; 
Zhao et al., 2019). Expression of PD-L1 on stromal cells 
in ATLL is associated with better prognosis. However, 
its expression on malignant ATLL cells is linked with 
unfavorable outcome (Miyoshi et al., 2016).

PD-L2 in T-cell lymphoma
PD-L2 has higher affinity to PD-1 than PD-L1 but 

has lower and largely unpredictable expression in T-cell-
derived malignancies. Its expression is more frequently 
reported in B-cell lymphomas (Gu et al., 2021). More
over, PD-L2 was much less studied in T-cell malignan-
cies compared to PD-1/PD-L1. No PD-L2 expression 
was reported for T-lymphoblastic lymphoma/leukemia 
(Panjwani et al., 2018) or malignant and TME cells in 
ENKTL-NT (Panjwani et al., 2018). Low frequency of 
PD-L2 expression was found in PTCL-NOS tumor cells 
(2 % of cases) as well as in malignant and TME cells in 
AITL (5 % of cases) (Panjwani et al., 2018). Likewise, 
only very low expression of PD-L2 was reported in cir-
culating CD4+ T cells and skin lesion-associated T lym-
phocytes in SS (Saulite et al., 2020).

CTLA-4
Another inhibitory receptor expressed on the surface 

of T cells is CTLA‑4. It is a CD28 homolog that binds 
CD80 and CD86 ligands with even higher affinity than 
CD28 (Chen and Flies, 2013). CTLA-4 binding to 
CD80/CD86 (located on the surface of APCs) inhibits 
TCR signaling in an SH2-containing 5’-inositol phos-
phatase 2 (SHIP2)-dependent manner and downregu-
lates PI3K/AKT signaling cascade activation (Hossen et 
al., 2023). Furthermore, CTLA-4 activation is capable 
to inhibit NF-κB and MAPK pathways (Harlin et al., 
2002; Chikuma, 2017). Following T-cell activation, 
CD28 is usually downregulated and replaced by CTLA-4 
or inducible co-stimulator (ICOS). CTLA-4 and ICOS 
have functionally distinct and opposite effects on the 

T-cell response – negative regulation by CTLA-4 and 
positive regulation by ICOS (Rudd and Schneider, 
2003). Within the normal immune response, CTLA-4 
activation protects T cells from indefinite activation and 
exhaustion (Rowshanravan et al., 2018). The CTLA-4 
pathway maintains the balance between survival, prolif-
eration, and apoptosis of T cells. It helps to suppress the 
activity of effector T cells and, at the same time, to en-
hance the immunomodulatory function of Tregs, both 
reducing the immune response (Kim and Cho, 2022; 
Hossen et al., 2023). Studies of CTLA-4 deregulation in 
T-cell-derived malignancies are summarized below and 
overviewed in Table 2.

CTLA-4 in T-cell lymphoma
The highest constitutive CTLA-4 expression can be 

detected in Tregs, but its expression can also be found at 
conventional T cells (Walker and Sansom, 2015).

Multiple studies have demonstrated excessive expres-
sion of CTLA-4 in various types of lymphoma (Oye
wole-Said et al., 2020; Chen et al., 2021). In ATLL, tu-
mor cell overexpression of CTLA-4 was found in 15 % 
of cases (Shimauchi et al., 2008). In T-large granular 
lymphocytic leukemia (T-LGLL), CTLA-4 expression 
in CD8+ cells is linked to their reduced inducibility 
(Wlodarski et al., 2004). Overexpression and the highest 
expression of CTLA-4 in tumor cells was shown for MF 
and SS (Wong et al., 2006). Additionally, transcriptomic 
analysis revealed CTLA-4 overexpression in CD30-po
sitive transformed MF (Lai et al., 2023), and the CTLA-4 
expression level positively correlated with the disease 
stage (Wong et al., 2006; Menter and Tzankov, 2018; 
Neuwelt et al., 2020). Notably, CTLA-4 upregulation in 
SS malignant T cells was associated with impaired pro-
teasome function and consequent GATA binding pro-
tein 3 (GATA3) activation (Gibson et al., 2013). In ALCL, 
the CTLA4 gene is frequently hypermethylated and hence 
downregulated (Hassler et al., 2016).

Yoo et al. (2016) reported recurrent CTLA4:CD28 
translocations in TCLs with the highest frequency in 
T-follicular helper cell lymphomas, including AITL. 
The resulting CTLA-4:CD28 fusion protein triggers 
T-cell activation, proliferation, and consequently higher 
levels of IL-2. The oncogenic effect of C-terminal do-

Table 2. Deregulation of CTLA-4 in T-cell-derived malignancies

Tumor type Finding Reference

ATLL CTLA-4 is expressed in tumor cells and has negative 
prognostic significance (Onishi et al., 2022)

ATLL CTLA-4 is overexpressed in tumor cells in 15 % of cases (Shimauchi et al., 2008)
SS CTLA-4 is upregulated in tumor cells (Gibson et al., 2013)
MF CTLA-4 is overexpressed in tumor cells (Wong et al., 2006)
CD30-positive transformed MF CTLA-4 is upregulated in tumor cells (Lai et al., 2023)
ALCL CTLA4 gene hypermethylation and repression (Hassler et al., 2016)

Abbreviations: AITL – angioimmunoblastic T-cell lymphoma, ALCL – anaplastic large cell lymphoma, ATLL – adult T-cell leukemia/
lymphoma, CTLA-4 – cytotoxic T-lymphocyte-associated protein 4, MF – mycosis fungoides, SS – Sézary syndrome.
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main of CD28 fusion with the N-terminal domain of 
CTLA-4 was documented in many T-cell lymphomas 
(Takeuchi et al., 2021). 

CTLA-4 expression seems to be an adverse prognos-
tic factor in ATLL (Onishi et al., 2022), the same as in 
SS. On the other hand, it opens options for its therapeu-
tic utilization (Sadeghi et al., 2022). CTLA-4 could po-
tentially diagnostically discriminate cutaneous ALCL 
from CD30-positive transformed MF and MF in general 
(Wong et al., 2006; Lai et al., 2023).

The CTLA-4 expression pattern in malignant T cells 
and TME of T-cell lymphomas is still poorly understood; 
however, there are strong indications for its potential 
diagnostic, prognostic, and therapeutic utilization.

Other immune checkpoint molecules
Other immune checkpoint molecules, including lym-

phocyte-activation gene 3 (LAG-3), T-cell immunoglo
bulin and mucin domain-containing protein 3 (TIM-3), 
T-cell immunoreceptor with Ig and ITIM domains 
(TIGIT), or OX40/OX40L, are much less studied.

LAG-3 is expressed mainly by T cells, NK cells, B cells, 
and dendritic cells. It co-localizes with CD3, CD4 and 
CD8 and is recognized as an inhibitor of T-cell function 
(including CD4+ Tregs and anergic CD8+ T cells) (Huo 
et al., 2022). Its high expression levels are associated 
with T-cell exhaustion (He et al., 2016). Activated 
LAG‑3 signaling shows functional synergy with the 
PD‑1/PD‑L1 signaling pathway. It enhances expression 
of PD-1 receptor, which further reduces activation of 
T cells (Long et al., 2018).

TIM-3 has been suggested as another immune check-
point molecule that decreases T-cell activity. It is ex-
pressed on T lymphocytes (both CD4+ and CD8+), mac-
rophages, and dendritic cells (Sakuishi et al., 2010; 
Sauer et al., 2023). Interaction of TIM-3 with galectin-9 
on the surface of tumor cells triggers cell death of effec-
tor T cells; therefore, it reduces the anti-tumor immune 
response (Takeuchi et al., 2021).

TIGIT is mostly expressed on effector T cells and NK 
cells. Its immunosuppressive effect is triggered by 
CD155 and CD112 ligands (Yu et al., 2009). TIGIT and 
its co-stimulatory analog CD226 share a similar struc-
ture, which makes their relationship comparable to the 
relationship between CTLA-4 and CD28 (Jutz et al., 
2017; Manieri et al., 2017). The TIGIT interaction with 
CD155, which is expressed on dendritic cells, induces 
ERK phosphorylation and MAPK signaling pathway 
activation, with consequent modulation of IL-10 and 
IL-12 production (Yu et al., 2009). TIGIT can directly 
inhibit TCR-driven activation of T cells, restrain Th1 
and Th17 cells, and potentiate Th2 cells (Joller et al., 
2011, 2014).

OX40/OX40L belongs to the TNFR/TNF superfami-
ly. OX40 is expressed on activated CD4+ and CD8+ 
T cells, as well as NK cells and Tregs (Fu et al., 2020). 
Following T-cell activation (by TCR-antigen stimula-
tion), OX40 is expressed within 12–24 hours in resting 
T cells and as soon as in 4 hours in memory T cells. This 

enables memory T cells to perform much faster second-
ary immune response (Fu et al., 2020). Consequently, 
the OX40-OX40L interaction stimulates T-cell expan-
sion, survival, and cytokine production. This process is 
further amplified by OX40-mediated inhibition of Tregs 
(Webb et al., 2016). Given their function, OX40/OX40L 
agonists could be potentially used to enhance the anti-
tumor immune response. Studies of LAG-3, TIM-3, 
TIGIT, and OX40/OX40L immune checkpoint molecule 
deregulation in T-cell-derived malignancies are summa-
rized below and overviewed in Table 3.

Other immune checkpoint molecules in T-cell 
lymphoma

LAG-3, TIM-3, TIGIT, or OX40/OX40L are much 
less studied in T-cell malignancies. However, determi-
nation of their expression levels or their deregulation 
might provide novel therapeutic avenues for the therapy 
of T-cell lymphomas.

Similarly to previously discussed immune checkpoint 
molecules, the expression of LAG-3 is highly variable. 
LAG-3 is expressed in tumor tissue in 95 % of ENKTL 
cases (Feng et al., 2018). On the other hand, reduced 
expression was found in clonal and non-clonal CD4+ 
T cells in SS (Anzengruber et al., 2019). In PTCL, 
TME- and tumor cell-associated expression of LAG-3 is 
uncommon (Murga-Zamalloa et al., 2020). However, 
LAG-3 overexpression was detected in T cells in CTCL 
(Querfeld et al., 2018). Importantly, overexpression of 
LAG-3 can be associated with anti-PD-1 treatment re-
sistance (Michot et al., 2021).

TIM-3 expression could be found in tumor tissue of 
over 90 % of ENKTLs. This high expression was even 
suggested as a negative prognostic factor (Feng et al., 
2018). In ATLL, TIM-3 is expressed in over 40 % of 
cases, potentiates chemoresistance, and negatively af-
fects anti-tumor immunity (Horlad et al., 2016). More
over, TIM-3 expression was demonstrated in TME stro-
mal cells in ATLL (Takeuchi et al., 2021). At the same 
time, it is not frequently detectable in PTCL (Murga-
Zamalloa et al., 2020).

Scarce data are available on TIGIT expression and its 
contribution to the pathophysiology of T-cell malignan-
cies. Huuhtanen et al. (2022) showed that the TIGIT 
overexpression was associated with T-cell exhaustion in 
T-LGLL. Other than that, TIGIT expression was as-
sessed mainly in CTCL, particularly in SS, where it 
seems to be overexpressed in CD4+ T cells (Jariwala et 
al., 2017) and tumor T cells (Anzengruber et al., 2019). 
Its upregulation was associated with tumor progression 
on treatment (Borcherding et al., 2023).

The OX40/OX40L pathway was implicated in patho-
genesis of CTCL, namely MF and SS. In MF and SS, 
tumor cells frequently co-express OX40 and OX40L, 
which was suggested to support tumor cell proliferation 
(Kawana et al., 2021). Additionally, OX40 expression 
could also be found in malignant cells of ATLL. OX40 
expression in ATLL was associated with excessive ad-
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Table 3. Deregulation of less studied immune checkpoint molecules in T-cell-derived malignancies

Immune 
checkpoint 
molecule

Tumor type Finding Reference

LAG-3

CTCL CD4+ CTCL populations in the skin contain more LAG-3-positive 
T cells compared to healthy individuals (Querfeld et al., 2018)

SS Reduced expression of LAG-3 in blood CD4+ T cells and in 
clonal and non-clonal CD4+ T cells (Anzengruber et al., 2019)

PTCL LAG-3 is rarely detected in tumor cells and TME (Murga-Zamalloa et al., 2020)
ENKTL LAG-3 is expressed in over 90 % of cases in tumor tissues (Feng et al., 2018)

TIM-3

ATLL TIM-3 is expressed in lymphoma cells in over 40 % of cases (Horlad et al., 2016)
ATLL TIM-3 is expressed in stromal cells in TME (Takeuchi et al., 2021)
PTCL TIM-3 is rarely detected in tumor cells and TME (Murga-Zamalloa et al., 2020)
ENKTL TIM-3 is expressed in over 90 % of cases in tumor tissues (Feng et al., 2018)

TIGIT

T-LGLL TIGIT overexpression in tumor cells is associated with T-cell 
exhaustion (Huuhtanen et al., 2022)

SS Higher percentage of TIGIT-expressing CD4+ T cells in the skin (Jariwala et al., 2017)
SS High TIGIT expression in clonal and non-clonal CD4+ T cells (Anzengruber et al., 2019)
Treated SS TIGIT upregulation in malignant T cells following treatment (Borcherding et al., 2023)

OX40/OX40L

ATLL OX40 expression in PBMCs and lymph node cells (among them, 
over 60 % of cells are tumor cells) (Imura et al., 1997)

MF and SS Excessive expression of OX40 in lesional skin and tumor cells (Kawana et al., 2021)
LyP OX40 strong expression in tumor tissues in 38 % of patients (Gniadecki and Rossen, 2003)

PTCL
OX40 expression in tumor tissues in 94 % of 
angioimmunoblastic lymphomas, 100 % of angiocentric 
lymphomas, and 48 % of large-cell lymphomas

(Jones et al., 1999)

Abbreviations: ATLL – adult T-cell leukemia/lymphoma, CTCL – primary cutaneous T-cell lymphoma, ENKTL – extranodal NK/T-cell 
lymphoma, LAG-3 – lymphocyte activation gene 3, LyP – lymphomatoid papulosis, MF – mycosis fungoides, PBMCs – peripheral 
blood mononuclear cells, PTCL – peripheral T-cell lymphoma, SS – Sézary syndrome, TIGIT – T-cell immunoreceptor with Ig and 
ITIM domains, TIM-3 – T-cell immunoglobulin and mucin domain-containing protein 3, T-LGLL – T-large granular lymphocytic leu-
kemia, TME – tumor microenvironment.

hesion to endothelial cells, which suggests that OX40 
might improve the capacity of malignant cells to infil-
trate tissue (Imura et al., 1997). Furthermore, OX40 ex-
pression in tumor tissues has been reported in over one 
third of patients with LyP (Gniadecki and Rossen, 2003). 
Tumor tissue-associated OX40 expression could also be 
detected in most cases of PTCL (Jones et al., 1999). 

Taken together, the expression of the majority of im-
mune checkpoint molecules in TCL is highly variable. It 
is necessary to carefully define these expression pat-
terns in tumor cells as well as in TME and to establish 
the role of immune checkpoint molecules within the 
pathogenesis of TCL. All this could help to identify bio-
markers for appropriate therapeutic use of immune 
checkpoint inhibitors.

Immune Checkpoint Inhibitors in the 
Treatment of T-Cell Lymphomas

Immune checkpoint inhibitors (ICIs) are primarily 
monoclonal antibodies aimed to enhance the anti-tumor 
immune response by T-cell reactivation (Hatic et al., 

2021). The most widely studied and commonly used 
ICIs are anti-PD-1 monoclonal antibodies (nivolumab, 
pembrolizumab, cemiplimab), anti-PD-L1 monoclonal 
antibodies (durvalumab, atezolizumab, avelumab), and 
anti-CTLA-4 monoclonal antibodies (ipilimumab) (Ba
sudan, 2022). A schematic overview of the main check-
point inhibitors is provided in Fig. 6.

The first cancer type where ICIs were tested success-
fully (and showed a good efficacy and response rates) 
was melanoma (Board et al., 2021; Pathak and Zito, 
2024). It was for the first time that metastatic melanoma 
could have been cured by a non-surgical approach, 
which caused a paradigm shift in the treatment of mela-
noma. Based on that, ICIs are now well established 
within the metastatic melanoma first line of treatment 
(Michielin et al., 2019; Swetter et al., 2019; Pathak and 
Zito, 2024). Later, the efficacy of ICIs was documented 
in multiple other solid cancers within first-line therapy 
as well as after treatment failure, including renal, lung, 
ovarian, colorectal, gastroesophageal, urothelial, breast, 
and cervical cancers and selected hematological tumors 
(Hodgkin lymphoma and primary mediastinal B-cell 
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lymphoma) (Garon et al., 2015; Nanda et al., 2016; 
Garassino et al., 2018; Xu et al., 2018b; Chung et al., 
2019; von Tresckow et al., 2019; Zinzani et al., 2019; 
Ferrara et al., 2020; Bajorin et al., 2021; Hatic et al., 
2021; Basudan, 2022; Forde et al., 2022; Kaushik et al., 
2022; Shitara et al., 2022). As a next step to further im-
prove the treatment outcome, various ICI combinations 
and/or their combinations with chemotherapy are exten-
sively studied in clinical trials. For example, the combi-
nation of anti-PD-1 with anti-CTLA-4 or anti-TIM-3 
showed encouraging results in several solid cancers (in-
cluding melanoma) and hematological tumors (Ribas 
and Wolchok, 2018; Sun et al., 2018; Curigliano et al., 
2021). Clinical utilization of ICIs in solid cancers was 
recently extensively reviewed by Twomey and Zhang 
(2021).

On the other hand, a high proportion of patients do 
not respond to ICI treatment. Therefore, prediction of 
the treatment response is of utmost importance. It was 
shown that high tumor mutational burden (TMB, a total 
number of nonsynonymous mutations per tumor) is as-
sociated with a better chance of substantial treatment 
response. High TMB tumors produce a higher number 
of cancer-associated neo-antigens – the basis of immune 
cell-mediated tumor cell recognition. Clinical data sup-
port this hypothesis. ICIs showed very good treatment 
results in melanoma (a tumor type having generally one 
of the highest TMB) but low efficacy in acute lympho-
blastic or chronic myeloid leukemias (both having gen-
erally very low TMB) (Knaus et al., 2017; Klempner et 
al., 2020; Matsushita, 2021). TMB is highly variable in 
TCLs. It largely depends on the subtype. The highest 
TMB could be detected in PTCL-NOS and TCLs with 
mutated TP53 (Heavican et al., 2019).

Nivolumab (anti-PD-1) was the first checkpoint in-
hibitor approved for any hematological malignancy 
(Ghione et al., 2018). It is approved for relapsed Hodgkin 
lymphoma after autologous stem cell transplantation 
(Younes et al., 2016; Armand et al., 2018). Pembrolizu
mab, another humanized anti-PD-1 antibody, is appro
ved for primary mediastinal B-cell lymphoma (Armand 
et al., 2019; Zinzani et al., 2019). Furthermore, its effi-
cacy is evaluated in clinical trials for DLBCL (Smith et 
al., 2020). ICIs showed promising results also in other 
B-cell-derived tumors (including relapsed primary cen-
tral nervous system lymphomas, chronic lymphocytic 
leukemia in Richter’s transformation, or mantle cell 
lymphoma). However, their use might not be as straight-
forward as in solid cancers due to the immunological fea-
tures of B-cell tumors. The use of ICIs in B-cell-derived 
malignancies was recently reviewed (Armengol et al., 
2021). We will further focus only on ICI studies in TCLs. 

Clinical trials with ICIs in the treatment of T-cell lym-
phomas are summarized for each immune checkpoint 
molecule below and overviewed in Table 4.

Anti-PD-1
Nivolumab, an anti-PD-1 antibody, was evaluated in 

different types of TCLs (for example, MF, CTCL, non-
CTCL, and PTCL) in monotherapy or in combination 
with ipilimumab or chemotherapy. Various results were 
reported in MF and PTCL (Lesokhin et al., 2016; 
Bennani et al., 2019). However, a few accelerated pro-
gressions were observed, for example, in indolent ATLL 
(Ratner et al., 2018).

Pembrolizumab is another humanized anti-PD-1 anti-
body widely and successfully used in various cancers 
(Garon et al., 2015; Ribas et al., 2015). In CTCL, CITN-10 

Fig. 6. The main immune checkpoint inhibitors. Several groups of immune checkpoint inhibitors, including anti-PD-1, 
anti-PD-L1, and anti-CTLA-4 antibodies, have been tested in T-cell malignancies.
Abbreviations: APC – antigen-presenting cell, CTLA‑4 – cytotoxic T-lymphocyte-associated protein 4, PD‑1 – pro-
grammed cell death protein 1, PD‑L1 – programmed death ligand 1.
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Table 4. Overview of clinical trials with checkpoint inhibitors in T-cell-derived malignancies

Immune 
checkpoint 
inhibitor

Tumor type Finding Reference

anti-PD-1

Nivolumab

ATLL (indolent) Low effectiveness, risk of progression (Ratner et al., 2018)

MF/PTCL
Moderate effectiveness:
· 17 % PR
· 43 % SD

(Lesokhin et al., 2016)

PTCL (R/R)

Moderate effectiveness:
· ORR 33 % (4/12, 2 × CR, 2 × PR)
· PFS < 3 months
· OS < 7 months

(Bennani et al., 2022)

Pembrolizumab

MF/SS (R/R)

High effectiveness and durable response:
· ORR 38 % (9/24)
· 2 × CR
· 7 × PR
· at 1 year: PFS 65 %, OS 95 %

(Khodadoust et al., 2020)

PTCL
Consolidation after ASCT, promising effectivity:
· at 18 months after ASCT
· 13 of 21 treated patients were alive and achieved PFS

(Kwong et al., 2017; 
Merrill et al., 2023)

PTCL (R/R)

Combination with romidepsin:
· ORR 44 %
· 3 × CR (PFS > 10 month)
· 2 × PR

(Iyer et al., 2019)

ENKTL High effectiveness:
· ORR 100 % (7/7)

(Kwong et al., 2017; 
Khodadoust et al., 2020)

ENKTL

High effectiveness in combination with radiotherapy:
· ORR 57.1 %
· 2 × CR
· 2 × PR
· response duration, PFS, OS > 4 months

(Li et al., 2018)

Toripalimab ENKTL (R/R)

High effectiveness in combination with chemotherapy:
· ORR 3/3
· 2 × CR
· 1 × PR

(Du et al., 2020)

Sintilimab

ENKTL (R/R)

High effectiveness and safety:
· ORR 75 % (21/28)
· CR 21.4 %
· PR 53.6 %
· 2-year OS 78.6 %

(Tao et al., 2019)

ENKTL
Combination with P-GEMOX, in 9 patients:
· 88.9 % ORR
· 66.7 % of patients in CR at 10.6 months

(Cai et al., 2020a)

Geptanolimab PTCL (R/R)

Good effectiveness:
· ORR 40.4 % (36/89)
· 13 × CR
· 23 × PR 
multiple side effects – TRAE > 3 in 25.5 %, mostly hematological

(Shi et al., 2021)

trial for R/R MF and SS reported a good response rate 
(44 % overall response rate, ORR), although 50 % of 
patients reported transitionally exacerbated skin symp-
toms (Khodadoust et al., 2020). Another trial with pem-
brolizumab in combination therapy with romidepsin in 
R/R PTCL showed a response rate of 44 %, with three 
patients achieving complete remission lasting for more 
than 10 months (Iyer et al., 2019). Another currently 
evaluated combination includes pembrolizumab, prala-

trexate (dihydrofolate reductase inhibitor), and decita
bine (epigenetic modifier) in NCT03240211 clinical trial. 
Pembrolizumab combined with radiotherapy in older 
patients with ENKTL had a promising effect in case re-
ports; some of them even achieved complete remission 
lasting for over two years (Klee et al., 2020). Pembrolizu
mab was also highly effective in a study on NK/T-cell 
lymphomas after L-asparaginase failure (Kwong et al., 
2017) and showed a promising effect in PTCL after 
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autologous stem cell transplantation (ASCT) (Merrill et 
al., 2023).

Several authors reported single cases of pembroli-
zumab or nivolumab treatment in R/R ALK+ ALCL with 
high PD-1 expression (Hebart et al., 2016; Prokoph et 
al., 2018; Rigaud et al., 2018), which had a good effect 
with manageable adverse symptoms. All three patients 
were young adults with relapsed ALCL achieving a good 
response to PD-1 blockade.

Camrelizumab (humanized anti-PD-1 antibody) was 
already approved for Hodgkin lymphoma (Markham 
and Keam, 2019; Nie et al., 2019) and is currently under 
extensive evaluation in T-cell malignancies as mono-
therapy and in combination with apatinib – a selective 
vascular endothelial growth factor receptor 2 inhibitor 
(Liu et al., 2023). Moreover, camrelizumab, apatinib, 
pegaspargase, and radiotherapy combination is tested in 
stage IE/IIE of ENKTL treatment (NCT04366128) (Sun 
et al., 2022), and camrelizumab in combination with 
anti-CD30+ CAR (chimeric antigen receptor) T cells is 
evaluated within phase II clinical trial in CD30+ lym-
phomas (NCT05320081).

Toripalimab (humanized anti-PD-1 monoclonal anti-
body) was evaluated in combination with chemotherapy 

(chidamide, etoposide, thalidomide) in clinical trial in 
three R/R ENKTL patients (Du et al., 2020). All three 
patients responded, two of them were in durable com-
plete remission, while one achieved partial remission. 
Several other studies for ENKTL with or without aspar-
aginase are underway (e.g., NCT04365036).

Sintilimab (also a humanized anti-PD-1 antibody with 
a stronger affinity to PD-1 than nivolumab or pembroli-
zumab) has shown efficacy and safety in R/R ENKTL in 
the ORIENT-4 study (Tao et al., 2019). One case report 
of relapsed ENKTL described complete remission with 
the sintilimab and chidamide combination (Yan et al., 
2020). Importantly, sintilimab was already approved for 
the treatment of R/R Hodgkin lymphoma in China (Shi 
et al., 2019). However, a related study reported a higher 
incidence of peri-engraftment respiratory distress syn-
drome in patients undergoing autologous stem cell trans-
plantation with prior treatment by sintilimab than with 
other PD-1 inhibitors (Bai et al., 2021). In another pro-
spective study of nine ENKTL patients, sintilimab showed 
promising results in combination with P-GEMOX 
(pegaspargase, gemcitabine, oxaliplatin); 88.9 % ORR 
with 66.7 % of patients in complete remission at 10.6 
months (Cai et al., 2020a). These promising results led 

Immune 
checkpoint 
inhibitor

Tumor type Finding Reference

anti-PD-L1

Atezolizumab relapsed CTCL

Moderate effectiveness:
· ORR 15.4 % (4/26)
· SD 38.5 % (N = 10)
· PD 23.1 % (N = 6)
· not evaluable 11.5 %
· early death 11.5 %

(Stadler et al., 2021)

Avelumab

PTCL (R/R)

Low effectiveness:
· 53 % (18/34) non-suitable for first restaging
· 17.6 % PR
· 20.6 % PD
· 8.8 % SD

(Ahearne et al., 2020)

ENKTL

PD-L1 expression-dependent treatment efficacy:
· ORR 38 % (8/21) 
· CR 24 % (5/21)
·  treatment response correlated with blood EBV DNA decrease

(Kim et al., 2020)

Durvalumab CTCL (R/R)

Effective in combination with lenalidomide:
· 9/13 PR
· 2/13 PD
· 2/13 PD

(Querfeld et al., 2019)

CS1001 ENKTL (R/R) Complete remission in 36 % of cases, ORR 44 % (Huang et al., 2019)
anti-CTLA-4

Ipilimumab SS Case reports, good clinical response
(Bar-Sela and Bergman, 
2015; Sekulic et al., 
2015)

Abbreviations: ASCT – autologous stem cell transplantation, ATLL – adult T-cell leukemia/lymphoma, CR – complete remission, 
CTCL – primary cutaneous T-cell lymphoma, CTLA-4 – cytotoxic T-lymphocyte-associated protein 4, EBV – Epstein-Barr virus, 
ENKTL – extranodal NK/T-cell lymphoma, MF – mycosis fungoides, ORR – overall response rate, OS – overall survival, PD – progres-
sive disease, PD-1 – programmed cell death protein 1, PD-L1 – programmed death ligand 1, PFS – progression-free survival, P-GEMOX 
– pegaspargase, gemcitabine, oxaliplatin, PR – partial response, PTCL – peripheral T-cell lymphoma, R/R – relapsed/refractory, SD – 
stable disease, SS – Sézary syndrome, TRAE – treatment-related adverse event.
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to initiation of the follow-up NCT04127227 study for 
newly diagnosed ENKTL (Cai et al., 2020b).

Shi et al. (2021) showed in an open-label, phase II 
clinical trial that R/R PTCL patients with high expres-
sion of PD-L1 have a good response to geptanolimab 
(another humanized anti-PD-1 antibody) with 40.4 % 
ORR. Despite quite frequent adverse effects (mostly he-
matological), it could be considered safe and promising.

Anti-PD-1 therapy was also tested in combination 
with CAR T-cell therapy, but only in a mouse experi-
mental model (Nguyen et al., 2023). It was documented 
that ICIs potentiate CAR T-cell expansion and have a 
synergistic effect (John et al., 2013a, b). There is a po-
tential for synergic combinations of these immunothera-
peutic approaches. For example, anti-CD5 CAR T cells 
showed promising therapeutic results in T-cell lympho-
mas (Hill et al., 2019, 2020).

Anti-PD-L1
Multiple anti-PD-L1 antibodies have been developed 

and are currently tested in clinical trials, including TCL 
studies (e.g., atezolizumab, avelumab, durvalumab, and 
CS1001).

Atezolizumab showed excellent effects in solid tu-
mors (Herbst et al., 2020) and was evaluated in relapsed 
CTCL. However, it showed only moderate effectivity 
with 15.4 % ORR (Stadler et al., 2021).

Avelumab was evaluated in a phase II clinical trial in 
ENKTL and demonstrated PD-L1 expression-dependent 
treatment efficacy with 38 % ORR (Kim et al., 2020). 
The second study (AVAIL-T) reported a minimal effect 
of avelumab on the tumor size in R/R PTCL with more 
than 50 % of patients not reaching the first evaluation 
point (progression, death, withdrawal of consent); how-
ever, no hyperprogression was reported (Ahearne et al., 
2020).

The safety of durvalumab in combination with le-
nalidomide was tested in advanced CTCL in a phase I 
study with promising results – 70 % of patients reached 
partial remission (Querfeld et al., 2019). Durvalumab is 
also being evaluated in PTCL and CTCL in the open-
label, multi-arm DURABILITY trial with different 
combinations of epigenetic modifiers (pralatrexate, ro-
midepsin, and 5-azacytidine).

CS1001 was tested in R/R ENKTL with 36 % of pa-
tients achieving durable complete remission (Huang et 
al., 2019).

Anti-CTLA-4 and other checkpoint inhibitors 
Ipilimumab showed very promising responses in per-

sonalized treatment of TCL cases with oncogenic 
CTLA-4:CD28 fusion (Sekulic et al., 2015; Yoo et al., 
2016). A case report of one patient with relapsed mela-
noma on ipilimumab treatment was published after he 
achieved complete remission of MF (Bar-Sela and 
Bergman, 2015). Other checkpoint inhibitors have not 
been evaluated in T-cell lymphomas so far. Ieramilimab 
(anti-LAG-3 antibody) in combination with spartalizum-
ab (anti-PD-1) showed promising results and combined 

anti-tumor effect in advanced solid tumors (Schöffski et 
al., 2022). Vibostolimab, ASP8374, COM902, tirago
lumab, etigilimab, and other anti-TIGIT antibodies were 
tested mainly in combination with anti-PD-1 or anti-
PD-L1, and these combinations also improved treatment 
results in various advanced cancers (Hansen et al., 2021; 
Shirasuna et al., 2021; Mettu et al., 2022; Niu et al., 
2022). 

Generally, multiple studies showed a great promise 
that ICIs could potentially improve the treatment out-
comes of patients with T-cell-derived malignancies. On 
the other hand, targeting these powerful immune-modu-
lating molecules could be associated with severe adverse 
effects including secondary malignancy development. 
Further studies are needed to establish a biomarker-based 
treatment approach to pair the most promising ICIs with 
the appropriate clinical situation. 

Safety Concerns Associated with Immune 
Checkpoint Inhibitors

Given the critical role of checkpoint molecules within 
the immune system and the potency of checkpoint in-
hibitors, many adverse effects are associated with their 
use, potentially limiting the treatment efficacy (over-
viewed in Fig. 7). These frequently include immedia
te infusion-related symptoms, non-specific off-target 
symptoms, and (most importantly) risk of autoimmune 
inflammation of practically any organ (e.g., heart, skin, 
thyroid gland, kidneys, etc.) (Voskens et al., 2013; 
Osorio et al., 2017; Xu et al., 2018a; Teufel et al., 2019; 
Zhang et al., 2023). Fatigue is a very common symptom, 
which could be potentially related to hypophysitis or 
thyroid malfunction (frequently associated with anti-
PD-1 therapy). On the other hand, adrenal insufficiency 
or diabetes mellitus are rare (Akturk et al., 2019; Elia et 
al., 2020). Skin-related adverse events are usually low-
grade. Hepatic impairment is mostly dominated by iso-
lated liver test elevation. Nevertheless, cases of severe 
hepatitis have been observed. Quite common is colitis 
(Palmieri and Carlino, 2018). Cardiac toxicity (myocar-
ditis, acute hearth failure, arrhythmia, fibrosis, etc.) 
(Läubli et al., 2015; Heinzerling et al., 2016; Johnson et 
al., 2016; Tadokoro et al., 2016; Varricchi et al., 2018) 
and pulmonal complications are rare but serious adverse 
events (e.g., pneumonia, pneumonitis, or sarcoidosis) 
(Palmieri and Carlino, 2018). Severe neurological com-
plications are also rare, but ICI treatment could be as-
sociated with autoimmune encephalitis, meningitis, en-
cephalopathy, autoimmune disease such as myasthenia 
gravis, or Guillain-Barré syndrome (Kao et al., 2018; 
Anderson et al., 2019; Safa et al., 2019; Janssen et al., 
2021; Salim et al., 2021; Vogrig et al., 2022). Peripheral 
neuropathy is not as common as with chemotherapy, but 
its incidence and grade are higher in chemotherapy-ICI 
combinations (Palmieri and Carlino, 2018; Tian et al., 
2020). Acute kidney failure or acute interstitial nephritis 
were also reported, more frequently with anti-CTLA-4 
inhibitors than with anti-PD-L1 nivolumab (Fadel et al., 
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2009; Voskens et al., 2013; Izzedine et al., 2014). He
matological adverse effects include reactive cytopenias, 
infrequent but potentially lethal aplastic anemia, hemo-
philia, cryoglobulinemia, or thromboembolic events 
(Akhtari et al., 2009; Delyon et al., 2011; Pellegrino et 
al., 2017; Ni et al., 2019; Anand et al., 2020; Moik et al., 
2021; Yun et al., 2021; Kroll et al., 2022).

Importantly, many checkpoint molecules are ex-
pressed by malignant T cells; therefore, there are spe-
cific concerns regarding the effect of ICIs directly on 
T-cell-derived tumors such as post ICI treatment tumor 
hyperprogression (Ohmoto and Fuji, 2023). ICIs might 
also activate specific T-cell clonal expansion (and T-cell-
derived malignancy) as a secondary malignancy related 
to ICI treatment for another cancer type (Stuver and 
Moskowitz, 2023). As mentioned above, nivolumab 
treatment was associated with cases of accelerated tu-
mor progression in ATLL (Ratner et al., 2018; Rauch et 
al., 2019). Cases of tumor hyperprogression were also 
reported in R/R PTCL treated with nivolumab (Bennani 
et al., 2022) and pembrolizumab in combination with 
romidepsin (Iyer et al., 2020). Secondary T-cell malig-
nancies were unfortunately linked to multiple anti-PD-1 
antibodies (nivolumab, ipilimumab), and they were 
classified as adverse effects of treatment by the FDA 
Adverse Event Reporting System (FAERS) in 0.02 % of 
patients (Wang et al., 2018; Anand et al., 2020). More
over, case reports of newly developed PTCL-NOS and 

AITL were also reported after pembrolizumab treatment 
because of another cancer type (Duke et al., 2020; 
Avelino et al., 2022; van Eijs et al., 2023).

Taken together, the use of ICIs has its drawbacks and 
limitations. Their use in TCLs still needs to be further 
evaluated with the aim to predict and/or avoid cases of 
hyperprogression and improve treatment efficacy. This 
could be achieved using appropriate biomarkers at the 
level of tumor cells/tumor microenvironment analysis 
or additional up-to-date techniques (e.g., liquid biopsy) 
(Lu et al., 2022; Pfeiferova et al., 2022).

Conclusion
T-cell lymphomas present a challenge to successful 

treatment due to their low frequency, heterogeneity, 
prevalent insensitivity to standard chemotherapy regi-
mens, and frequent relapses. Moreover, their rare inci-
dence limits the research interest and negatively affects 
the feasible design of clinical trials. Generally, the thera-
peutic goal is to find appropriate cancer cell-targeted 
treatment (or immunotherapy) and/or their combina-
tions to specifically inhibit the tumor cell growth with-
out affecting non-malignant cells.

Allogenic stem cell transplantation had partial suc-
cess; however, targeted treatment, including immuno-
therapy, would have much greater and wider utilization. 
Development of effective combinations of targeted 

Fig. 7. Overview of immune checkpoint inhibitors-associated adverse effects
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drugs and chemotherapy could bring even greater ben-
efits. One of the most recent and very promising thera-
peutic strategies includes ICIs in combination with CAR 
T-cell therapy.

On the other hand, there are certain risks associated 
with the use of ICIs, including T-cell lymphoma hyper-
progression, secondary T-cell-derived malignancy de-
velopment following ICI treatment, general adverse ef-
fects associated with ICIs, or primary and secondary 
resistance. Variable expression of immune checkpoints 
and multiple microenvironmental factors might also af-
fect the efficacy of ICIs, with the need to find appropri-
ate biomarkers to identify the most suitable clinical situ-
ation. Nevertheless, ongoing studies should define soon 
and more clearly the efficacy and safety of ICIs in the 
T-cell lymphoma treatment. Confirmation of initial 
promising results might, therefore, add another treat-
ment modality towards the long awaited improvement 
of the T-cell-derived malignancy treatment outcome.
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