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on a total of 1,200 samples, which included four 
NSCLC specimens analysed through single-cell RNA 
sequencing (scRNA-seq), 1,000 NSCLC samples ob-
tained from The Cancer Genome Atlas (TCGA) and 
196 NSCLC specimens collected from the GSE37745 
cohort. In patients with NSCLC, those presenting a 
favourable risk profile demonstrated notable eleva-
tions in specific immune cells while concurrently ex-
hibiting reductions in other types. CD8+ T cells, with 
their established role in inducing apoptosis in cancer 
cells, have emerged as crucial predictors and modu-
lators of treatment strategies for NSCLC patients. 
The combination of single-cell and bulk RNA se-
quencing has produced a biomarker signature, em-
phasizing the CD8+ T cells’ crucial role in NSCLC 
prognosis and treatment.

Introduction
Non-small cell lung carcinoma (NSCLC) represents 

the predominant type of lung cancer worldwide, account-
ing for about 85 % of all cases (Chhikara and Parang, 
2023). Despite continuous efforts over the years leading 
to significant progress in diagnosing and managing 
NSCLC, the five-year survival rate remains dismally 
low (Spigel et al., 2022). Immunotherapy has gained 
recognition within this framework as a ground-breaking 
approach, especially in advanced NSCLC cohorts. 
Notably, antibody therapies targeting cellular immune 
checkpoints have become essential treatment strategies 
(Lurienne et al., 2020). However, only a subset of pa-
tients achieves substantial benefits from these treat-
ments, highlighting the urgent need for effective bio-
markers to predict patient outcomes and response to 
immunotherapy.

CD8+ T cells, central to immune defence, are pivotal 
in determining the success of immunotherapeutic ap-
proaches in oncology (Tanoue et al., 2019). Recent re-
search has established a significant association between 
tumour-infiltrating CD8+ T cells and enhanced patient 
outcomes, as well as improved efficacy of immunother-
apies (Krishna et al., 2020; Raskov et al., 2021; Philip 
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and Schietinger, 2022). Although CD8+ T-cell marker 
genes (TCMGs) have been extensively studied, a com-
prehensive and reliable biomarker signature has yet to 
be found. Such a signature could significantly improve 
prognostic precision and predict the immunotherapy re-
sponse in NSCLC patients, potentially marking a turn-
ing point in the battle against this challenging disease. 
The scientific community continues its relentless pur-
suit of ground-breaking discoveries that may alter the 
therapeutic landscape for NSCLC.

The advent of single-cell sequencing technology pro-
vides an in-depth understanding of the mechanisms of 
action of tumour-infiltrating CD8+ T cells in NSCLC 
(Liu et al., 2021). Utilizing single-cell RNA sequencing 
(scRNA-seq), scientists are focused on unravelling the 
complex interactions within the tumour microenviron-
ment, identifying key players in the immune response to 
NSCLC (Chen et al., 2019; Cortellini et al., 2019; Qu et 
al., 2020). This cutting-edge technique heralds a new 
era, possibly revealing a ground-breaking biomarker 
signature that could transform prognostic and therapeu-
tic approaches for NSCLC patients.

In this study, the fusion of scRNA-seq with bulk RNA 
sequencing (bulk RNA-seq) seeks to identify and vali-
date an innovative signature of biomarkers grounded in 
TCMGs, aiming to assess both the prognosis and the 
immunotherapeutic response in NSCLC patients. The 
study begins with an extensive analysis of numerous 
publicly available scRNA-seq and bulk RNA-seq data
sets, focusing on genes closely related to CD8+ T-cell 
behaviour. After obtaining a curated gene set, we moved 
to the next phase, which is applying advanced statistical 
and bioinformatic techniques to develop an innovative 
predictive model for prognosis and immunotherapy tra-
jectories. This approach offers valuable insights into the 
NSCLC’s complexity, guiding the field toward person-
alized immunotherapies and improved patient progno-
ses.

Material and Methods

Data collection

This investigation incorporated a comprehensive da-
taset comprising 1,200 specimens, which included four 
NSCLC samples with scRNA-seq data, 1,000 NSCLC 
specimens sourced from The Cancer Genome Atlas 
(TCGA) and an additional 196 NSCLC samples derived 
from the GSE37745 cohort (https://www.ncbi.nlm.nih.
gov/geo/). To elucidate TCMGs specific to NSCLC, 
scRNA-seq data of four NSCLC patients from 
GSE117570 were analysed from Tumour Immune 
Single-cell Hub 2 (Han et al., 2023). Additionally, we 
collected extensive tumour transcriptomic data for 1,080 
NSCLC samples from TCGA-LUAD and TCGA-LUSC 
via the UCSC Xena platform (available at: https://xen-
abrowser.net/). After removing samples without corre-
sponding clinical information, 1,000 samples were ana-
lysed. This extensive dataset facilitated identification of 

survival-related genes and formulation of prognostic 
signatures with significant implications. To validate our 
findings externally, we employed the GSE37745 dataset 
from the GEO database (Barrett et al., 2013). For har-
monization and enhanced comparability between TCGA 
samples and the GEO dataset, the TCGA RNA-seq data 
were transformed into Transcripts Per Kilobase Million 
(TPM) values, a unit conducive to thorough analysis 
and evaluation (Wagner et al., 2012). In order to confirm 
the predictive capacity of TCMGs in immunotherapy 
response, we collected transcriptomic data along with 
matching clinical details from individuals treated with 
anti-PD-L1 in the IMvigor210 cohort. These resources 
were accessed from Mariathasan et al. (2018), thus pro-
viding a comprehensive understanding of the nuances of 
immunotherapy response.

Unveiling CD8+ T-cell profiles by diving into 
scRNA-seq data

We initiated the analysis by utilizing the scRNA-seq 
data sourced from the GSE117570 dataset, accessible 
via the TISCH2 database (Han et al., 2023). By compar-
ing the distinctive profiles of CD8+ T cells with other 
cellular counterparts, we successfully found 220 differ-
entially expressed genes, based on a fold change greater 
than 1.5 and an adjusted P value lower than 0.05. In par-
allel, we downloaded a comprehensive collection of 
2,533 immune-related genes from ImmPort (Bhatta
charya et al., 2014) and InnateDB (Breuer et al., 2013) 
databases. We effectively compared the DEGs with the 
immune-related gene pool by employing a Venn dia-
gram. This comprehensive analysis revealed a notable 
intersection, highlighting 108 genes demonstrating a 
significant overlap between the DEGs and the immune-
related genes.

Construction and validation of the prognostic 
potential of TCMGs

To assess the prognostic significance of TCMGs for 
overall survival (OS) in the TCGA NSCLC cohort, a 
univariate Cox regression analysis was carried out. This 
analysis identified prognostic genes based on a P value 
less than 0.05, revealing genes with notable prognostic 
relevance. To reduce the likelihood of overfitting, these 
prognostic genes were subject to an exhaustive evalua-
tion using the advanced least absolute shrinkage and se-
lection operator (LASSO) Cox proportional hazards re-
gression method, facilitated by the “glmnet” package 
(Tibshirani, 1997). Using the “cv.glmnet” function, we 
conducted a detailed 10-fold cross-validation to identify 
the best model setup. The tuning parameter, labelled as 
“lambda”, was thoughtfully determined using the 1 – SE 
(standard error) criterion, ensuring high accuracy in 
model selection. As a result, a complete catalogue of 
genes possessing non-zero beta coefficients were identi-
fied, representing the essence of prognostic value. Sub
sequently, a stepwise multivariate Cox regression analy-
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sis was applied, incorporating the gene signatures 
identified through the LASSO Cox regression. This de-
tailed analysis allowed the pinpointing of specific gene 
signatures with significant prognostic implications. Our 
risk model was based on a meticulously formulated lin-
ear combination, integrating the mRNA expression lev-
els of these genes with their corresponding risk coeffi-
cients. By adopting the median cut-off value as a pivotal 
criterion, we systematically categorized patients into 
low-risk and high-risk groups. This approach signifi-
cantly enhanced the precision of our prognostic assess-
ments, enabling more detailed and insightful stratifica-
tion that potentially informs personalized treatment 
decisions. For validation of the prognostic efficacy and 
discriminative ability of these TCMGs, we utilized the 
“survivalROC” package (Heagerty and Zheng, 2005) to 
compute the area under the curve (AUC). The Kaplan-
Meier method was used in the survival analysis, while 
the log-rank test, conducted employing the “survminer” 
R package, assessed the significance in statistics of de-
viations in survival outcomes. Additionally, we validat-
ed the predictive power of our gene signature through 
comprehensive survival analysis and AUC calculations, 
using data from the GEO dataset. To assess the statisti-
cal significance of the differences between the high-risk 
group and low-risk group for each clinicopathological 
factor, the χ2 test was adopted.

Pathway and function enrichment analysis
We analysed our genetic data using Gene Ontology 

(GO) and The Kyoto Encyclopedia of Genes and Geno
mes (KEGG) by utilizing the “clusterProfiler” R pack-
age. This approach allowed us to categorize genes into 
functionally related groups and to identify relevant bio-
logical pathways, enhancing our understanding of the 
molecular mechanisms involved in our study (Yu et al., 
2012). The Gene Ontology (GO) analysis was done us-
ing the “enrichGO” function within the “clusterProfiler” 
R package, leveraging the extensive genome-wide an-
notation packages, specifically org.Hs.eg.db, which the 
Bioconductor project has carefully curated. This ap-
proach allowed for detailed exploration of gene func-
tions, biological processes and cellular components as-
sociated with our dataset (Gentleman et al., 2004). For 
deeper exploration of the biological pathways, we em-
ployed the “enrichKEGG” function of “clusterProfiler”. 
By offering direct access to the most recent version of 
the KEGG database via a web API, the tool made it sim-
pler to acquire crucial pathway information. This fea-
ture significantly facilitated the comprehensive functio
nal analysis by allowing for rapid and efficient retrieval 
of the data related to biological pathways, thereby en-
hancing the depth and scope of our study insights into 
gene functions and interactions. Throughout our analy-
sis, we set a stringent significance threshold of P < 0.05 
to ensure identification of notably enriched GO terms and 
KEGG pathways. This threshold was crucial in discern-
ing our dataset’s most significant functional enrichments, 
guiding us toward meaningful biological insights.

Immune cell infiltration analysis and 
immunotherapy response prediction

To acquire an in-depth understanding of the complex 
dynamics of immune cell infiltration and associated 
variations in gene sets, we performed a detailed analysis 
using immune cell infiltration analysis. The CIBERSORT 
algorithm, which is renowned for precisely identifying 
infiltration patterns of 22 immune cell types by their 
gene expression profiles, was utilized for analysing the 
complex nature of immune cell infiltration in depth 
(Newman et al., 2019). This method provided a crucial 
framework for examining the proportionate distribution 
of immune cell infiltration between high-risk and low-
risk groups, thus revealing the complexities of immune 
cell behaviour within the tumour microenvironment. 
Finally, PD-L1 mRNA expression data were extracted 
from the RNA-sequencing datasets of the TCGA NSCLC 
cohort. PD-L1 is a key biomarker applied for forecast-
ing responses to immune checkpoint blockade interven-
tion.

Statistical analysis
We conducted a detailed comparison of categorized 

variables among distinct risk groups, employing the 
Wilcoxon rank-sum test for its proven reliability and 
precision in non-parametric statistical analysis. To en-
hance the depth of our prognostic assessment, we car-
ried out both univariate and multivariate Cox regression 
analyses. These analyses were pivotal in determining 
the significance of TCMGs in conjunction with various 
clinicopathological factors. We applied a P value thresh-
old of < 0.05, enabling identification of statistically sig-
nificant associations. To mitigate the effects of multiple 
testing, the Benjamini-Hochberg procedure was strate-
gically employed to adjust P values, thus maintaining 
the validity of our analysis. Our data analysis and visu-
alization were performed using R (version 4.1.0), which 
is accessible at: http://www.R-project.org.

Results

Decoding CD8+ T-cell signatures through 
scRNA-seq analysis of GSE117570

In our in-depth examination of the scRNA-seq data 
from GSE117570, we applied Principal Component 
Analysis (PCA) for dimensionality reduction. Focusing 
on variable genes, this method allowed us to distinguish 
16 unique cell clusters (Fig. 1A). Our next step was to 
elucidate the identities of these clusters. To achieve that, 
we referred to the Human Primary Cell Atlas (https://
rdrr.io/), which provided valuable insights into the cel-
lular composition of our samples. This investigation re-
vealed that cluster 2 predominantly consisted of CD8+ 
T cells (Fig. 1B). Notably, the gene expression profile of 
this particular cluster revealed a significant 220 differ-
entially expressed genes among the 16 clusters (https://
github.com/sarinderkaur/CD8-T-Cell-Signatures-as-
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Prognostic-and-Immunotherapy-Response-Predictors-
in-NSCLC). To delve deeper into the cellular landscape 
of NSCLC, we carefully selected the top 10 cell clusters 
from four primary NSCLC samples, to explore their 
hidden complexities (Fig. 1C).

Identification and analysis of NSCLC-associated 
TCMGs

From our investigation using ImmPort (https://www.
immport.org) and InnateDB (http://www.innatedb.
com/), we identified 2,533 immune-related genes direct-
ly involved in the molecular landscape of NSCLC. Venn 
diagram analysis elucidated those 108 genes intersected 
between CD8+ T differentially expressed genes and 
those from the aforementioned databases (Supplementary 
Fig. S1), henceforth referred to as NSCLC-associated 
TCMGs. For the development of a predictive signature 
based on TCMGs, we employed the NSCLC patient co-

hort from TCGA as our primary dataset. Through uni-
variate Cox regression, we identified 15 TCMGs sig-
nificantly connected to OS, detailed in Supplementary 
Fig. S2. Progressing to LASSO Cox regression analysis, 
we carefully evaluated these 15 TCMGs (Fig. 2A and B), 
ultimately narrowing down to 10 key genes (ANXA2, 
CCL20, CEBPB, CTSL, THBS1, EREG, SPP1, HLA-
DMB, CXCL17, TRBC1) for further analysis. To deter-
mine the TCMG risk score, we used the following equa-
tion (1): 

0.055 * ANXA2 + 0.030 * CCL20 + 0.135 * CEBPB + 
0.192 * CTSL + 0.010 * THBS1 + 0.040 * EREG + 
0.004 * SPP1 − 0.112 * HLA-DMB − 0.042 * CXCL17 
− 0.021 * TRBC1 (Equation 1)

We then segmented the patient cohort into high-risk 
and low-risk groups based on the median risk score. 
Remarkably, survival analysis revealed a noteworthy 

Fig. 1. Single-cell RNA-sequencing analysis of 
TCMGs in GSE117570. (A) PCA analysis identi-
fying cell clusters based on TCMGs. (B) Identifi-
cation of cell types using marker genes. (C) Dis-
tribution of cell types in patients with NSCLC. 
TCMGs, CD8+ T-cell marker genes.
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variance in outcomes between these groups. Figures 2C 
and D depict a notable trend in both the TCGA cohort 
and GSE37745, where the OS is markedly lower in pa-
tients within the low-risk group than in those catego-
rized as high-risk. We observed a notable correlation in 
detailed examination of TCMG mRNA expression with-
in the TCGA NSCLC cohort. Higher expression levels 
of ANXA2, CCL20, CEBPB, CTSL, THBS1, EREG and 
SPP1 were associated with decreased OS (Fig. 2 E–K), 
while lower expression levels of HLA-DMB, CXCL17 
and TRBC1 showed similar trends (Fig. 2L–N).

Prognostic efficacy of TCMG risk score in 
NSCLC cohorts

To confirm the prognostic utility of TCMGs, we es-
tablished a training set from NSCLC patients in the 
TCGA database, with GSE37745 patients forming the 
validation cohort. We thoroughly analysed the clinical 
characteristics across different risk categories in the 
TCGA dataset. This analysis elucidated a significant 
correlation between the calculated risk score and princi-
pal variables, including age, gender and stage of disease, 
as depicted in Supplementary Fig. S3. The ROC curves 
for the training group showed that the AUC for the risk 
score, age, gender and stage were 0.640, 0.539, 0.551 
and 0.629, respectively (Fig. 3A). Variations in AUC 
values were also observed in the GSE37745 cohort, with 
the risk score at 0.617, age at 0.585, gender at 0.519 and 

disease stage at 0.553 (Fig. 3B). Furthermore, the sur-
vival rates over 1-, 3- and 5-year intervals in both co-
horts yielded AUC values exceeding the 0.6 threshold 
(Fig. 3C and D). The study further identified that the 
seven genes deemed high-risk (ANXA2, CCL20, CEBPB, 
CTSL, THBS1, EREG and SPP1) showed increased ex-
pression in the high-risk group, indicating their potential 
as markers or contributors to heightened risk. Concur
rently, heatmaps for the TCGA and GSE37745 datasets 
provided a clear depiction of these findings, as shown in 
Figure 3E and F. Additionally, a higher risk score con-
sistently correlated with increased mortality and shorter 
survival, evident in both TCGA (Fig. 3G and I) and 
GSE37745 cohorts (Fig. 3H and J). The distribution 
plots of patient survival status, alongside survival analy-
sis and ROC curves, displayed similar patterns across 
the respective risk groups in both cohorts. These find-
ings collectively highlight the robustness and effective-
ness of the TCMG risk score in predicting prognostic 
results in individuals diagnosed with NSCLC.

Influence of TCMGs on pathway enrichment in 
NSCLC risk

We employed gene sets from the GO and KEGG 
pathways for a comprehensive enrichment analysis of 
the DEGs linked with TCMG risk groups. Our GO anal-
ysis revealed distinct molecular involvement for each 
risk group. Genes associated with the high-risk group 

Fig. 2. Construction of the prognostic model of TCMGs and survival 
risk score in the NSCLC cohort. (A) Profiles of TCMGs based on 
LASSO coefficients. (B) LASSO coefficient values for TCMGs in 
NSCLC. (C) Survival analysis of different risk subgroups in the 
TCGA cohort. (D) Survival analysis of different risk subgroups in the 
GSE37745 cohort. (E–N) Survival analysis for different risk sub-
groups with individual TCMGs: ANXA2 (E), CCL20 (F), CEBPB (G), 
CTSL (H), THBS1 (I), EREG (J), SPP1 (K), HLA-DMB (L), CXCL17 
(M), TRBC1 (N).
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predominantly interacted with external protective matri-
ces, such as the extracellular matrix and cellular mem-
branes. Conversely, genes in the low-risk group were 
notably associated with immunoglobulin-related cellu-
lar components, indicating distinct biological roles, as 
shown in Figure 4A and B. KEGG pathway analysis 
provided additional insights, revealing a significant cor-
relation between the high-risk gene group and pathways 
regulating cell cycle regulation, cytokine receptor inter-
actions, extracellular matrix (ECM) receptor engage-
ment, focal adhesion and NOD-like receptor signalling. 
These pathways suggest a complex interplay of cell pro-
liferation, adhesion and immune signalling. Neverthe
less, the low-risk gene group evidenced a remarkable 
propensity for metabolic pathways, highlighting differ-
ences in cellular metabolic activities (Fig. 4C and D).

Immune cell dynamics and TCMGs in NSCLC 
risk stratification

To elucidate the complex interplay between TCMGs 
and immune cell infiltration in NSCLC, we initially fo-
cused on the allocation of immune cells among different 
risk categories in the TCGA cohort (Fig. 5A). Utilizing 
CIBERSORT (http://cibersort.stanford.edu/), our analy-
sis indicated that NSCLC patients with low-risk scores 
showed a significant increase in B memory cells, plas-
ma cells, CD8+ T cells, monocytes and other specific im-
mune cells, suggesting a distinct immunological profile. 
Conversely, these patients showed a reduced presence 
of resting NK cells, M0 macrophages, activated mast 
cells, eosinophils and neutrophils (Fig. 5B). Further ex-
tending our analysis, we compared immune function 
scores between the high-risk and low-risk groups. The 
data we obtained indicated that patients with low-risk 
scores had enhanced scores in several immune function 
areas, including antigen-presenting cells (APCs), B cells, 

CD8+ T cells, HLA, immature dendritic cells (IDCs), 
mast cells, plasmacytoid dendritic cells (PDCs), T-cell 
co-stimulation, T helper cells, T follicular helper cells 
(TFH), tumour-infiltrating lymphocytes (TIL) and type 
II interferon (Υ-IFN) response. However, these patients 
showed decreased scores in chemokine receptor (CCR) 
expression, macrophages, para inflammation and Treg 
sectors (Fig. 5C). Additionally, our observations indi-
cated markedly reduced expression of CD274, an essen-
tial immunoregulatory molecule, in the low-risk group 
(Fig. 5D). Intriguingly, our analysis revealed a distinct 
positive correlation between CD274 expression and the 
risk score, suggesting a potential involvement of CD274 
in determining the prognostic landscape of NSCLC 
(Fig. 5E).

Discussion
In this study, we discovered a biomarker signature 

centred on the genetic markers of CD8+ T cells. These 
cells are crucial cytotoxic lymphocytes, instrumental in 
targeting and eradicating malignant cells primarily 
through induction of apoptosis. The combination of sin-
gle-cell and bulk RNA sequencing enabled identifica-
tion of this unique signature, highlighting the power of 
integrating genomic technologies. This development 
significantly advances our understanding of the essen-
tial role of CD8+ T cells in prognosis and personalized 
therapy for NSCLC patients.

In our detailed analysis of the scRNA-seq data from 
GSE117570, we utilized PCA to navigate the complexi-
ties of the dataset, identifying 16 distinct cell clusters. 
Significantly, one cluster was identified as particularly 
noteworthy, distinguished by a predominant composi-
tion of CD8+ T cells. The differential gene expression 
patterns within this cluster indicated the involvement of 
specific genes in modulating CD8+ T-cell activity. These 

Fig. 3. Risk score analysis of the TCMG signature in the NSCLC cohort. (A–B) ROC curves predicting overall survival 
sensitivity and specificity based on different risk scores, age, gender and stage in TCGA (A) and GSE37745 (B); (C–D) 
OC curves predicting 1-, 3- and 5-year survival sensitivity and specificity based on different risk scores in TCGA (C) and 
GSE37745 (D); (E–F) expression characteristics of the 10 identified TCMGs in TCGA (E) and GSE37745; (G–H) distri-
bution of risk scores in TCGA (G) and GSE37745 (H); (I–J) survival status of different risk subgroups in TCGA (I) and 
GSE37745 (J); (K) clinical characteristics of different risk subgroups in TCGA.
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findings align with existing research, which has consis-
tently highlighted the critical role of tumour-infiltrating 
CD8+ T cells in NSCLC. Such cells are integral in deter-
mining the patient prognosis and in influencing the ef-
ficacy of immunotherapeutic responses (Zhuang et al., 
2010; Donnem et al., 2015). 

Our data-driven methodology successfully identified 
a powerful 10-gene prognostic signature for NSCLC, 
consisting of ANXA2, CCL20, CEBPB, CTSL, THBS1, 
EREG, SPP1, HLA-DMB, CXCL17 and TRBC1. These 
genes distinctly stratify patients into high-risk and low-
risk categories. Delving deeper into this signature, we 
observe a complex interplay among these genes, each 
uniquely associated with various cellular functions and 
pathways. Notably, annexin A2 (ANXA2) plays a multi-
faceted role in cellular processes such as proliferation, 
differentiation and migration, emerging as a key player 

in this signature (Wang et al., 2012; Wang and Lin, 
2014; Feng et al., 2017). Epiregulin (EREG), an impor-
tant epidermal growth factor receptor (EGFR) ligand, is 
involved in various cancers (Yun et al., 2012; Jing et al., 
2016; He et al., 2019), including lung cancer (Sunaga 
and Kaira, 2015). Another significant gene, cathepsin L 
(CTSL), is known for its role in tumour invasion and 
metastasis (Olson and Joyce, 2015; Sudhan and 
Siemann, 2015). Utilizing LASSO Cox regression anal-
ysis, these 10 genes collectively form a robust biomark-
er signature. This signature not only correlates with sur-
vival rates but also provides insights into the molecular 
mechanisms underpinning NSCLC prognosis and re-
sponse to immunotherapy. This discovery marks a sig-
nificant advancement in personalized treatment strate-
gies, offering a new perspective on the management of 
NSCLC.

Fig. 4. Functional enrichment analyses were conducted on the transcriptome of TCMR risk groups. (A–B) The top five 
pathways with the highest normalized enrichment scores in GO gene sets were identified for both high-risk (A) and low-
risk (B) groups; (C–D) the top five pathways with the highest normalized enrichment scores within the KEGG gene sets 
were determined for both high-risk (C) and low-risk (D) groups.
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Our validation process, utilizing the extensive TCGA 
and GEO datasets, has provided significant insights into 
the predictive accuracy of our novel gene signature. The 
consistency observed between the training (TCGA) and 
testing (GEO) cohorts underscores the reliability and 
potential clinical relevance of our findings. Additionally, 
the strong correlation between an elevated risk score, as 
determined by our signature, and increased mortality, 
along with decreased survival time, further emphasizes 
the clinical utility of this signature in prognosticating 
outcomes for NSCLC patients.

Our extensive enrichment analysis of DEGs within 
the high- and low-risk groups, based on our identified 
TCMGs, has provided a detailed understanding of their 
functional implications. This analysis has revealed a 
distinct division of cellular roles and pathways between 
these groups. These insights are crucial in elucidating 
the complex influence of TCMGs on the pathogenesis 
and progression of NSCLC. However, it is essential to 
emphasize the need for further in-depth research. Such 
research would aim to understand the biological signifi-
cance of these findings fully and to explore their poten-

Fig. 5. Association between the TCMGs and the immune cell infiltration in NSCLC. (A) Distribution of immune cells in 
different risk subgroups in TCGA. (B) Differences in immune cell infiltration between the two risk subgroups.
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tial in developing targeted therapeutic strategies for 
NSCLC.

Our study illuminates the complex interplay between 
TCMGs and the dynamic immune landscape in NSCLC. 
Notably, we observed distinct patterns of immune cell 
infiltration, including B memory cells, plasma cells and 
CD8+ T cells, among others, which varied significantly 
between high-risk and low-risk patient groups. These 
variations highlight the significant influence of TCMGs 
on shaping the tumour microenvironment. Furthermore, 
the correlation between these variations in immune cell 

composition and risk stratification likely plays a critical 
role in the differing outcomes observed in NSCLC pa-
tients. This finding underscores the importance of our 
TCMGs in determining prognosis and influencing the 
treatment responses in NSCLC.

A particularly interesting finding of our study is the 
positive correlation between CD274 (PDL1) expression 
and the derived risk score. This observation gains sig-
nificance in light of the extensive research on PD-L1 as 
a predictive biomarker for immunotherapy response in 
NSCLC. Given the PD-L1 established role as a key tar-

Fig. 5. Association between the TCMGs and the immune cell infiltration in NSCLC. (C) Differential immune function 
scores between the two risk subgroups. (D) CD274(PD-L1) expression in the two risk subgroups. (E) Correlation between 
CD274 expression and risk score.
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get in NSCLC immunotherapy (D’incecco et al., 2015; 
Schmidt et al., 2015), our TCMG signature potentially 
offers valuable insights for clinical decision-making, 
specifically in the use of PD-L1 inhibitors for NSCLC 
patients. However, it is crucial to acknowledge the need 
for further detailed research. This is particularly signifi-
cant in light of the intricate and multifaceted nature of 
responses observed in immune checkpoint blockade 
therapy.

We must recognize the limitations of our study, as 
they highlight avenues for future research. The primary 
limitation is its retrospective nature, which introduces the 
possibility of selection bias. Therefore, the validation of 
our findings through well-designed, prospective studies 
involving diverse populations is crucial to confirm their 
validity and robustness. Additionally, there is a clear 
need for functional experiments. These experiments are 
essential to determine the specific roles of the identified 
TCMGs in the pathogenesis of NSCLC and their influ-
ence on the response to immunotherapeutic treatments.

In conclusion, our study significantly advances NSCLC 
research by identifying a novel 10-gene signature based 
on TCMGs. This signature represents a significant step 
forward in the prognostication of NSCLC and poten-
tially guides immunotherapeutic strategies for this com-
plex disease. Our findings contribute to a paradigm 
shift, enhancing our understanding of the dynamic rela-
tionship between CD8+ T cells and NSCLC. Moving 
forward, these insights offer a basis for developing per-
sonalized and effective treatments, presenting promis-
ing avenues for patients confronting this formidable 
medical condition.
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