Fol. Biol. 2003, 49, 191-196
https://doi.org/10.14712/fb2003049050191
Gamma Irradiation Results in Phosphorylation of p53 at Serine-392 in Human T-Lymphocyte Leukaemia Cell Line MOLT-4
References
1. 1998) Explaining differences in sensitivity to killing by ionising radiation between human lymphoid cell lines. Cancer Res. 58, 2817-2824.
, D. R., Radford, I. R. (
2. 2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499-506.
< , Ch. J., Kastan, M. B. (https://doi.org/10.1038/nature01368>
3. 1989) Protein measurement using bicinchoninic acid: elimination of interfering substances. Anal. Biochem. 180, 136-139.
< , R. E., Jarvis, K. L., Hyland, K. J. (https://doi.org/10.1016/0003-2697(89)90101-2>
4. 1990) Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines. Mol. Cell. Biol. 10, 5502-5509.
, J., Haas, M. (
5. 2000) Caspase-3-like activity determines the type of cell death following ionizing radiation in MOLT-4 human leukaemia cells. Br. J. Cancer 83, 642-649.
< , D., Holl, V., Weltin, D., Lacornerie, T., Magnenet, P., Dufour, P., Bischoff, P. (https://doi.org/10.1054/bjoc.2000.1322>
6. 1993) WAF1, a potential mediator of p53 tumour suppression. Cell 75, 817-825.
< , W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., Vogelstein, B. (https://doi.org/10.1016/0092-8674(93)90500-P>
7. 2000) Computerized video time-lapse microscopy studies of ionizing radiation-induced rapid-interphase and mitosisrelated apoptosis in lymphoid cells. Radiat. Res. 153, 36-48.
< , B., Radford, I. R., Forrester, H. B., Dewey, W. C. (https://doi.org/10.1667/0033-7587(2000)153[0036:CVTLMS]2.0.CO;2>
8. 1995) A simple p53 functional assay for screening cell lines, blood, and tumors. Proc. Natl. Acad. Sci. USA 92, 3963-3967.
< , J. M., Frebourg, T., Moreau, V., Charbonnier, F., Martin, C., Chappuis, P., Sappino, A. P., Limacher, J. M., Bron, L., Benhattar, J., Tada, M., Van Meir, E. G., Estreicher, A., Iggo, R. D. (https://doi.org/10.1073/pnas.92.9.3963>
9. 1997) Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis 18, 328-337.
< , A., Obermaier, C., Boguth, G., Csordas, A., Diaz, J.-J., Madjar, J.-J. (https://doi.org/10.1002/elps.1150180306>
10. 2000) The biochemistry of apoptosis. Nature 407, 770-776.
< , M. O. (https://doi.org/10.1038/35037710>
11. 1994) Regulation of the cryptic sequence-specific DNA-binding function of p53 by protein kinases. Cold Spring Harbor Symp. Quant. Biol. 59, 195-206.
< , T. R., Lane, D. P. (https://doi.org/10.1101/SQB.1994.059.01.024>
12. 1999) Attenuation of caspase-3-dependent apoptosis by Trolox post-treatment of X-irradiated MOLT-4 cells. Int. J. Radiat. Biol. 75, 155-163.
< , O., Takahashi, K., Kuwabara, M. (https://doi.org/10.1080/095530099140609>
13. 1993) Screening patients for heterozygous p53 mutations using a functional assay in yeast. Nat. Genet. 5, 124-129.
< , C., Frebourg, T., Yan, Y. X., Vidal, M., Friend, S. H., Schmidt, S., Iggo, R. (https://doi.org/10.1038/ng1093-124>
14. 1998) Functional activation of p53 via phosphorylation following DNA damage by UV but not γ radiation. Proc. Natl. Acad. Sci. USA 95, 2834-2837.
< , M., Lozano, G. (https://doi.org/10.1073/pnas.95.6.2834>
15. 1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304-6311.
, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., Craig, R. W. (
16. 1989) Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res. 49, 5870-5878.
, S. H. (
17. 1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA 89, 7491-7495.
< , S. J., Plunkett, B. S., Walsh, W. V., Kastan, M. B. (https://doi.org/10.1073/pnas.89.16.7491>
18. 1999) Regulation of p53 in response to DNA damage. Oncogene 18, 7644-7655.
< , N. D., Jackson, S. P. (https://doi.org/10.1038/sj.onc.1203015>
19. 1995) Diminished capacity for p53 in mediating a radiationinduced G1 arrest in established human tumor cell lines. Oncogene 11, 1885-1892.
, C. Y., Nagasawa, H., Dahlberg, W. K., Little, J. B. (
20. 1998) Ultraviolet radiation, but not γ radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc. Natl. Acad. Sci. USA 95, 6399-6402.
< , H., Taya, Y., Ikeda, M., Levine, A. J. (https://doi.org/10.1073/pnas.95.11.6399>
21. 2000) Ethanol induced apoptosis in human HL-60 cells. Gen. Physiol. Biophys. 19, 181-194.
, M., Vavrova, J., Vokurkova, D. (
22. 2001) Evaluation of the relative contribution of p53-mediated pathway in Xray-induced apoptosis in human leukemic MOLT-4 cells by transfection with a mutant p53 gene at different expression levels. Cell Tissue Res. 306, 101-106.
< , H., Kohara, M., Shinohara, K. (https://doi.org/10.1007/s004410100438>
23. 1994) X-ray-induced cell death: apoptosis and necrosis. Radiat. Res. 140, 1-9.
< , H., Shinohara, K. (https://doi.org/10.2307/3578561>
24. 1997) Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 57, 4285-4300.
, P. M., Jackman, J., Bae, I., Myers, T. G., Fan, S., Mutoh, M., Scudiero, D. A., Monks, A., Sausville, E. A., Weinstein, J. N., Friend, S., Fornace, A. J. Jr., Kohn, K. W. (
25. 1997) Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry 36, 10117-10124.
< , K., Sakamoto, H., Lewis, M. S., Anderson, C. W., Erickson, J. W., Appella, E., Xie, D. (https://doi.org/10.1021/bi970759w>
26. 2000) Signal transduction and cellular radiation responses. Radiat. Res. 153, 245-257.
< , R. K., Dent, P., Grant, S., Mikkelsen, R. B., Valerie, K. (https://doi.org/10.1667/0033-7587(2000)153[0245:STACRR]2.0.CO;2>
27. 1997) Role of wild type p53 in the G2 phase: regulation of the γ-irradiation-induced delay and DNA repair. Oncogene 15, 2597-2607.
< , D., Almog, N., Peled, A., Goldfinger, N., Rotter, V. (https://doi.org/10.1038/sj.onc.1201436>
28. 1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325-334.
< , S. Y., Ikeda, M., Taya, Y., Prives, C. (https://doi.org/10.1016/S0092-8674(00)80416-X>
29. 1997) DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11, 3471-3481.
< , J. D., Canman, Ch. E., Taya, Y., Sakaguchi, K., Appella, E., Kastan, M. B. (https://doi.org/10.1101/gad.11.24.3471>
30. 2001) Rare somatic p53 mutation identified in breast cancer: a case report. Tumor Biol. 22, 59-66.
, J., Nemajerova, A., Trbusek, M., Vagunda, V., Kovarik, J. (
31. Vávrová, J., Filip, S. (2002) Radiosensitivity of the Haematopoeitic System. Galén, Prague. (in Czech)
32. 1980) Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251-306.
< , A. H., Kerr, J. F. R., Currie, A. R. (https://doi.org/10.1016/S0074-7696(08)62312-8>
33. 1999) Mitochondrial and intracellular free-calcium regulation of radiation-induced apoptosis in human leukemic cells. Int. J. Radiat. Biol. 75, 493-504.
< , Q., Kondo, T., Noda, A., Fujiwara, Y. (https://doi.org/10.1080/095530099140429>