Fol. Biol. 2005, 51, 148-156
https://doi.org/10.14712/fb2005051050148
Toll-like Receptors. I. Structure, Function and Their Ligands
References
1. 2002) Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32, 1958-1968.
< , P., Hacker, H., Rutz, M., Bauer, S., Vabulas, R. M., Wagner, H. (https://doi.org/10.1002/1521-4141(200207)32:7<1958::AID-IMMU1958>3.0.CO;2-U>
2. 2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738.
< , L., Holt, A. C., Medzhitov, R., Flavell, R. A. (https://doi.org/10.1038/35099560>
3. 2002) Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1and TLR2deficient mice. Nat. Med. 8, 878-884.
< , L., Thomas, V., Schnare, M., Lobet, Y., Anguita, J., Schoen, R. T., Medzhitov, R., Fikrig, E., Flavell, R. A. (https://doi.org/10.1038/nm732>
4. 1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285, 736-739.
< , A. O., Yang, R. B., Mark, M. R., Suggett, S., Devaux, B., Radolf, J. D., Klimpel, G. R., Godowski, P., Zychlinsky, A. (https://doi.org/10.1126/science.285.5428.736>
5. 2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA 98, 9237-9242.
< , S., Kirschning, C. J., Hacker, H., Redecke, V., Hausmann, S., Akira, S., Wagner, H., Lipford, G. B. (https://doi.org/10.1073/pnas.161293498>
6. 1996) A conserved signaling pathway: the Drosophila toll-dorsal pathway. Ann. Rev. Cell Dev. Biol. 12, 393-416.
< , M. P., Anderson, K. V. (https://doi.org/10.1146/annurev.cellbio.12.1.393>
7. 2003) A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 101, 4500-4504.
< , N. L., Onai, N.,Lanzavecchia, A. (https://doi.org/10.1182/blood-2002-11-3569>
8. 2002) Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J. Virol. 76, 8729-8736.
< , K., Lien, E., Klagge, I. M., Avota, E., SchneiderSchaulies, J., Duprex, W. P., Wagner, H., Kirschning, C. J., Ter Meulen, V., Schneider-Schaulies, S. (https://doi.org/10.1128/JVI.76.17.8729-8736.2002>
9. 1999) Host defense mechanisms triggered by microbial lipoproteins through Tolllike receptors. Science 285, 732-736.
< , H. D., Libraty, D. H., Krutzik, S. R., Yang, R.-B., Belisle, J. T., Bleharski, J. R., Maitland, M., Norgard, M. V., Plevy, S. E., Smale, S. T., Brennan, P. J., Bloom, B. R., Godowski, P. J., Modlin, R. L. (https://doi.org/10.1126/science.285.5428.732>
10. 2002) A role of cytokines in local and systemic inflammation, and septic shock. Vnitr. Lek. 48, 755-762.
, M. (
11. 2001) Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol. 167, 416-423.
< , M. A., Almeida, I. C., Takeuchi, O., Akira, S., Valente, E. P., Procopio, D. O., Travassos, L. R., Smith, J. A., Golenbock, D. T., Gazzinelli, R. T. (https://doi.org/10.4049/jimmunol.167.1.416>
12. 2001) Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochem. Biophys. Acta 1518, 157-161.
, T., Ulevitch, R. J. (
13. 2005) Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozin. J. Exp. Med. 201, 19-25.
< , C., Ishii, K. J., Kawai, T., Hemmi, H., Sato, S., Uematsu, S., Yamamoto, M., Takeuchi, O., Itagaki, S., Kumar, N. (https://doi.org/10.1084/jem.20041836>
14. 2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77, 4588-4596.
< , T., Kurt-Jones, E. A., Boehme, K. W., Belko, J., Latz, E., Golenbock, D. T., Finberg, R. W. (https://doi.org/10.1128/JVI.77.8.4588-4596.2003>
15. 2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529-1531.
< , S. S., Kaisho, T., Hemmi, H., Akira, S., Reis e Sousa, C. (https://doi.org/10.1126/science.1093616>
16. 2002) Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J. Biol. Chem. 277, 40456-40461.
< , M. A., Steiner, T. S. (https://doi.org/10.1074/jbc.M206851200>
17. 2000) Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur. Cytokine Netw. 11, 362-371.
, X., Poltorak, A., Wei, Y., Beutler, B. (
18. 2004) Haemophilus influenzae porin induces Toll-like receptor 2-mediated cytokine production in human monocytes and mouse macrophages. Infect. Immun. 72, 1204-1209.
< , M., Finamore, E., Rossano, F., Gambuzza, M., Catania, M. R., Teti, G., Midiri, A., Mancuso, G. (https://doi.org/10.1128/IAI.72.2.1204-1209.2004>
19. 2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882-1885.
< , A. T., Navas, T. A., Lyons, S., Godowski, P. J., Madara, J. L. (https://doi.org/10.4049/jimmunol.167.4.1882>
20. 2001) Cutting edge: Functional interactions between Toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166, 15-19.
< , A. M., O’Mahony, D. S., Ozinsky, A., Underhill, D. M., Aderem, A., Klebanoff, S. J., Wilson, C. B. (https://doi.org/10.4049/jimmunol.166.1.15>
21. 2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J. Exp. Med. 198, 1563-1572.
< , T. R., Verbon, A., Lettinga, K. D., Zhao, L. P., Li, S. S., Laws, R. J., Skerrett, S. J., Beutler, B., Schroeder, L., Nachman, A., Ozinsky, A., Smith, K. D., Aderem, A. (https://doi.org/10.1084/jem.20031220>
22. 2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099-10103.
< , F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M., Aderem, A. (https://doi.org/10.1038/35074106>
23. 2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745.
< , H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., Akira, S. (https://doi.org/10.1038/35047123>
24. 2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196-200.
< , H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., Akira, S. (https://doi.org/10.1038/ni758>
25. 1999) Cutting edge: Inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by Toll-like receptor 2. J. Immunol. 163, 2382-2386.
< , M., Kirschning, C. J., Schwandner, R., Wesche, H., Weis, J. H., Wooten, R. M., Weis, J. J. (https://doi.org/10.4049/jimmunol.163.5.2382>
26. 2002) Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168, 4531-4537.
< , V., Rothenfusser, S., Britsch, S., Krug, A., Jahrsdorfer, B., Giese, T., Endres, S., Hartmann, G. (https://doi.org/10.4049/jimmunol.168.9.4531>
27. 1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749-3752.
< , K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., Akira, S. (https://doi.org/10.4049/jimmunol.162.7.3749>
28. 2004) Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. Cell Microbiol. 6, 187-199.
< , T., Kiura, K., Yasuda, M., Kataoka, H., Inoue, N., Hasebe, A., Takeda, K., Akira, S., Shibata, K. (https://doi.org/10.1046/j.1462-5822.2003.00356.x>
29. 2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol. 31, 3388-3393.
< , D., Napolitani, G., Colonna, M., Sallusto, F., Lanzavecchia, A. (https://doi.org/10.1002/1521-4141(200111)31:11<3388::AID-IMMU3388>3.0.CO;2-Q>
30. 2004) mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 279, 12542-12550.
< , K., Ni, H., Capodici, J., Lamphier, M., Weissman, D. (https://doi.org/10.1074/jbc.M310175200>
31. 2005) Pathogen recognition with Toll like receptors. Curr. Opin. Immunol. 17, 338-344.
< , T., Akira, S. (https://doi.org/10.1016/j.coi.2005.02.007>
32. 2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31, 3026-3037.
< , A., Towarowski, A., Britsch, S., Rothenfusser, S., Hornung, V., Bals, R., Giese, T., Engelmann, H., Endres, S., Krieg, A. M., Hartmann, G. (https://doi.org/10.1002/1521-4141(2001010)31:10<3026::AID-IMMU3026>3.0.CO;2-H>
33. 2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1, 398-401.
< , E. A., Popova, L., Kwinn, L., Haynes, L. M., Jones, L. P., Tripp, R. A., Walsh, E. E., Freeman, M. W., Golenbock, D. T., Anderson, L. J., Finberg, R. W. (https://doi.org/10.1038/80833>
34. 2004) Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc. Natl. Acad. Sci. USA 101, 1315-1320.
< , E. A., Chan, M., Zhou, S., Wang, J., Reed, G., Bronson, R., Arnold, M. M., Knipe, D. M., Finberg, R. W. (https://doi.org/10.1073/pnas.0308057100>
35. 2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5, 190-198.
< , E., Schoenemeyer, A., Visintin, A., Fitzgerald, K. A., Monks, B. G., Knetter, C. F., Lien, E., Nilsen, N. J., Espevik, T., Golenbock, D. T. (https://doi.org/10.1038/ni1028>
36. 2003) Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5. Microbes Infect. 5, 1345-1356.
< , S. K., Stack, A., Katzowitsch, E., Aizawa, S. I., Suerbaum, S., Josenhans, C. (https://doi.org/10.1016/j.micinf.2003.09.018>
37. 1999) Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274, 33419-33425.
< , E., Sellati, T. J., Yoshimura, A., Flo, T. H., Rawadi, G., Finberg, R. W., Carroll, J. D., Espevik, T., Ingalls, R. R., Radolf, J. D., Golenbock, D. T. (https://doi.org/10.1074/jbc.274.47.33419>
38. 2004) CpG DNA redirects class-switching towards „Th1-like“ Ig isotype production via TLR9 and MyD88. Eur. J. Immunol. 34, 1483-1487.
< , L., Gerth, A. J., Peng, S. L. (https://doi.org/10.1002/eji.200324736>
39. 2003) Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198, 513-520.
< , J., Sato, A., Akira, S., Medzhitov, R., Iwasaki, A. (https://doi.org/10.1084/jem.20030162>
40. 2004) Human intestinal microvascular endothelial cells express Toll-like receptor 5: a binding partner for bacterial flagellin. J. Immunol. 172, 5056-5062.
< , C., Heidemann, J., von Eiff, C., Lugering, A., Spahn, T. W., Binion, D. G., Domschke, W., Lugering, N., Kucharzik, T. (https://doi.org/10.4049/jimmunol.172.8.5056>
41. 2002) Cutting edge: Immune stimulation by Neisserial porins is Toll-like receptor 2 and MyD88 dependent. J. Immunol. 168, 1533-1537.
< , P., Henneke, P., Ho, Y., Latz, E., Golenbock, D. T., Wetzler, L. M. (https://doi.org/10.4049/jimmunol.168.4.1533>
42. 1999) Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163, 3920-3927.
< , T. K., Wang, S., Lien, E., Yoshimura, A., Golenbock, D. T., Fenton, M. J. (https://doi.org/10.4049/jimmunol.163.7.3920>
43. 1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397.
< , R., Preston-Hurlburt, P., Janeway, C. A. J. (https://doi.org/10.1038/41131>
44. 2002) Does the shape of lipid A determine the interaction of LPS with Toll-like receptors? Trends Immunol. 23, 135-139.
< , M. G., van Deuren, M., Kullberg, B. J., Cavaillon, J. M., Van der Meer, J. W. (https://doi.org/10.1016/S1471-4906(01)02169-X>
45. 2002) Cell activation by Porphyromonas gingivalis lipid A molecule through Toll-like receptor 4and myeloid differentiation factor 88dependent signaling pathway. Int. Immunol. 14, 1325-1332.
< , T., Asai, Y., Hashimoto, M., Takeuchi, O., Kurita, T., Yoshikai, Y., Miyake, K., Akira, S. (https://doi.org/10.1093/intimm/dxf097>
46. 2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA 97, 13766-13771.
< , A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D., Wilson, C. B., Schroeder, L., Aderem, A. (https://doi.org/10.1073/pnas.250476497>
47. 2004) Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood 103, 3058-3064.
< , H., Wagner, M., Battiany, J., Rothenfusser, S., Wellisch, D., Hornung, V., Jahrsdorfer, B., Giese, T., Endres, S., Hartmann, G. (https://doi.org/10.1182/blood-2003-08-2972>
48. 1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085-2088.
< , A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B., Beutler, B. (https://doi.org/10.1126/science.282.5396.2085>
49. 1998) A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95, 588-593.
< , F. L., Hardiman, G., Timans, J. C., Kastelein, R. A., Bazan, J. F. (https://doi.org/10.1073/pnas.95.2.588>
50. 2003) Importance of extraand intracellular domains of TLR1 and TLR2 in NFkappa B signaling. J. Cell Biol. 162, 1099-10110.
< , F., Latz, E., Re, F., Mandell, L., Repik, G., Golenbock, D. T., Espevik, T., Kurt-Jones, E. A., Finberg, R. W. (https://doi.org/10.1083/jcb.200304093>
51. 2004) APC-independent activation of NK cells by the Toll-like receptor 3 agonist double-stranded RNA. J. Immunol. 172, 138-143.
< , K. N., Leung, B., Kwong, M., Zarember, K. A., Satyal, S., Navas, T. A., Wang, F., Godowski, P. J. (https://doi.org/10.4049/jimmunol.172.1.138>
52. 1999) Peptidoglycanand lipoteichoic acidinduced cell activation is mediated by Toll-like receptor 2. J. Biol. Chem. 274, 17406-17409.
< , R., Dziarski, R., Wesche, H., Rothe, M., Kirschning, C. J. (https://doi.org/10.1074/jbc.274.25.17406>
53. 1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777-1782.
< , R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., Kimoto, M. (https://doi.org/10.1084/jem.189.11.1777>
54. 2001) Fibrinogen stimulates macrophage chemokine secretion through tolllike receptor 4. J. Immunol. 167, 2887-2894.
< , S. T., King, J. A., Hancock, W. W. (https://doi.org/10.4049/jimmunol.167.5.2887>
55. 2003) Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4, 1247-1253.
< , K. D., Andersen-Nissen, E., Hayashi, F., Strobe, K., Bergman, M. A., Barrett, S. L., Cookson, B. T., Aderem, A. (https://doi.org/10.1038/ni1011>
56. 1998) Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N. Engl. J. Med. 339, 209-215.
< , A. C., Sikand, V. K., Meurice, F., Parenti, D. L., Fikrig, E., Schoen, R. T., Nowakowski, J., Schmid, C. H., Laukamp, S., Buscarino, C., Krause, D. S. (https://doi.org/10.1056/NEJM199807233390401>
57. 1999) TLR6: A novel member of an expanding toll-like receptor family. Gene 231, 59-65.
< , O., Kawai, T., Sanjo, H., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Takeda, K., Akira, S. (https://doi.org/10.1016/S0378-1119(99)00098-0>
58. 2002) Role of TLR1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10-14.
< , O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L. S. A. (https://doi.org/10.4049/jimmunol.169.1.10>
59. 2004) Hyaluronan fragments stimulate dermal endothelial recognition of injury through TLR4. J. Biol. Chem. 279, 17079-17084.
< , K. R., Trowbridge, J. M., Rudisill, J. A., Termeer, C. C., Simon, J. C., Gallo, R. L. (https://doi.org/10.1074/jbc.M310859200>
60. 2002) Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med. 195, 99-111.
< , C., Benedix, F., Sleeman, J., Fieber, C., Voith, U., Ahrens, T., Miyake, K., Freudenberg, M., Galanos, C., Simon, J. C. (https://doi.org/10.1084/jem.20001858>
61. 1986) Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. J. Exp. Med. 164, 777-793.
< , P. S., Soldau, K., Ulevitch, R. J. (https://doi.org/10.1084/jem.164.3.777>
62. 1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811-815.
< , D. M., Ozinsky, A., Hajjar, A. M., Stevens, A., Wilson, C. B., Bassetti, M., Aderem, A. (https://doi.org/10.1038/44605>
63. 2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 277, 15107-15112.
< , R. M., Ahmad-Nejad, P., Ghose, S., Kirschning, C. J., Issels, R. D., Wagner, H. (https://doi.org/10.1074/jbc.M111204200>
64. 2000) MD-2 binds to bacterial lipopolysaccharide. J. Endotoxin Res. 6, 489-491.
< , S., Kirkland, T., Soldau, K., Tobias, P. (https://doi.org/10.1177/09680519000060060201>
65. 2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat. Immunol. 2, 346-352.
< , C., Tapping, R. I., Mathison, J. C., Chuang, T. H., Kravchenko, V., Saint Girons, I., Haake, D. A., Godowski, P. J., Hayashi, F., Ozinsky, A., Underhill, D. M., Kirschning, C. J., Wagner, H., Aderem, A., Tobias, P. S., Ulevitch, R. J. (https://doi.org/10.1038/86354>
66. 2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626-1629.
< , F., Zhang, D., Andersen, J. F., Bannenmberg, G. L., Serhan, C. N., Hayden, M. S., Hieny, S., Sutterwala, F. S., Flavell, R. A., Ghash, S., Sher, A. (https://doi.org/10.1126/science.1109893>
67. 1999) Cutting edge: Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 165, 1-5.
< , A., Lien, E., Ingalls, R. R., Tuomanen, E., Dziarski, R., Golenbock, D. (https://doi.org/10.4049/jimmunol.163.1.1>
68. 2004) Toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522-1526.
< , D., Zhang, G., Hayden, M. S., Greenblatt, M. B., Bussey, C., Flavell, R. A., Ghosh, S. (https://doi.org/10.1126/science.1094351>