Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2006, 52, 34-44

https://doi.org/10.14712/fb2006052010034

Cell Death Signalling Pathways in the Pathogenesis and Therapy of Haematologic Malignancies: Overview of Apoptotic Pathways

P. Klener, Jr.1,2, L. Anděra3, P. Klener4,5, E. Nečas1,2, Jan Živný1,2

1Centre of Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
2Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
3Laboratory of Cell Signaling and Apoptosis, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
41st Medical Department – Clinical Department of Haematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
5Institute of Haematology and Blood Transfusion, Prague, Czech Republic

Received April 2006
Accepted May 2006

References

1. Arnoult, D., Gaume, B., Karbowski, M., Sharpe, J. C., Cecconi, F., Youle, R. J. (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bakmediated permeabilization. EMBO J. 22, 4385-4399. <https://doi.org/10.1093/emboj/cdg423>
2. Ashkenazi, A., Dixit, V. M. (1998) Death receptors: signaling and modulation. Science 281, 1305-1308. <https://doi.org/10.1126/science.281.5381.1305>
3. Barry, M., Heibein, J. A., Pinkoski, M. J., Lee, S. F., Moyer, R. W., Green, D. R., Bleackley, R. C. (2000) Granzyme B short-circuits the need for caspase 8 activity during granulemediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol. Cell Biol. 20, 3781-3794. <https://doi.org/10.1128/MCB.20.11.3781-3794.2000>
4. Bassik, M. C., Scorrano, L., Oakes, S. A., Pozzan, T., Korsmeyer, S. J. (2004) Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J. 23, 1207-1216. <https://doi.org/10.1038/sj.emboj.7600104>
5. Beere, H. M. (2005) Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J. Clin. Invest. 115, 2633-2639. <https://doi.org/10.1172/JCI26471>
6. Birbes, H., El Bawab, S., Hannun, Y. A., Obeid, L. M. (2001) Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 15, 2669-2679. <https://doi.org/10.1096/fj.01-0539com>
7. Boatright, K. M., Renatus, M., Scott, F. L., Sperandio, S., Shin, H., Pedersen, I. M., Ricci, J. E., Edris, W. A., Sutherlin, D. P., Green, D. R., Salvesen, G. S. (2003) A unified model for apical caspase activation. Mol. Cell 11, 529-541. <https://doi.org/10.1016/S1097-2765(03)00051-0>
8. Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M., Shore, G. C. (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22, 8608-8618. <https://doi.org/10.1038/sj.onc.1207108>
9. Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W., Sheu, S. S. (2004) Calcium, ATP, and ROS: a mitochondrial lovehate triangle. Am. J. Physiol. Cell Physiol. 287, C817-C833. <https://doi.org/10.1152/ajpcell.00139.2004>
10. Chen, M., Wang, J. (2002) Initiator caspases in apoptosis signaling pathways. Apoptosis 7, 313-319. <https://doi.org/10.1023/A:1016167228059>
11. Cheng, E. H., Wei, M. C., Weiler, S., Flavell, R. A., Mak, T. W., Lindsten, T., Korsmeyer, S. J. (2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAXand BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705-711. <https://doi.org/10.1016/S1097-2765(01)00320-3>
12. Chinnaiyan, A. M., Tepper, C. G., Seldin, M. F., O’Rourke, K., Kischkel, F. C., Hellbardt, S., Krammer, P. H., Peter, M. E., Dixit, V. M. (1996) FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptorinduced apoptosis. J. Biol. Chem. 271, 4961-4965. <https://doi.org/10.1074/jbc.271.9.4961>
13. Chou, J. J., Li, H., Salvesen, G. S., Yuan, J., Wagner, G. (1999) Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96, 615-624. <https://doi.org/10.1016/S0092-8674(00)80572-3>
14. Clem, R. J. (2001) Baculoviruses and apoptosis: the good, the bad, and the ugly. Cell Death. Differ. 8, 137-143. <https://doi.org/10.1038/sj.cdd.4400821>
15. Daugas, E., Susin, S. A., Zamzami, N., Ferri, K. F., Irinopoulou, T., Larochette, N., Prevost, M. C., Leber, B., Andrews, D., Penninger, J., Kroemer, G. (2000) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J. 14, 729-739. <https://doi.org/10.1096/fasebj.14.5.729>
16. Davis, J. E., Sutton, V. R., Smyth, M. J., Trapani, J. A. (2000) Dependence of granzyme B-mediated cell death on a pathway regulated by Bcl-2 or its viral homolog, BHRF1. Cell Death. Differ. 7, 973-983. <https://doi.org/10.1038/sj.cdd.4400725>
17. Deng, Y., Ren, X., Yang, L., Lin, Y., Wu, X. (2003a) A JNKdependent pathway is required for TNFα-induced apoptosis. Cell 115, 61-70. <https://doi.org/10.1016/S0092-8674(03)00757-8>
18. Deschesnes, R. G., Huot, J., Valerie, K., Landry, J. (2001) Involvement of p38 in apoptosis-associated membrane blebbing and nuclear condensation. Mol. Biol. Cell 12, 1569-1582. <https://doi.org/10.1091/mbc.12.6.1569>
19. Deveraux, Q. L., Reed, J. C. (1999) IAP family proteins – suppressors of apoptosis. Genes Dev. 13, 239-252. <https://doi.org/10.1101/gad.13.3.239>
20. Du, C., Fang, M., Li, Y., Li, L., Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42. <https://doi.org/10.1016/S0092-8674(00)00008-8>
21. Earnshaw, W. C., Martins, L. M., Kaufmann, S. H. (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424. <https://doi.org/10.1146/annurev.biochem.68.1.383>
22. Emery, J. G., McDonnell, P., Burke, M. B., Deen, K. C., Lyn, S., Silverman, C., Dul, E., Appelbaum, E. R., Eichman, C., DiPrinzio, R., Dodds, R. A., James, I. E., Rosenberg, M., Lee, J. C., Young, P. R. (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J. Biol. Chem. 273, 14363-14367. <https://doi.org/10.1074/jbc.273.23.14363>
23. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50. <https://doi.org/10.1038/34112>
24. Fadeel, B., Orrenius, S. (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J. Intern. Med. 258, 479-517. <https://doi.org/10.1111/j.1365-2796.2005.01570.x>
25. Fink, S. L., Cookson, B. T. (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907-1916. <https://doi.org/10.1128/IAI.73.4.1907-1916.2005>
26. Finucane, D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G., Green, D. R. (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 274, 2225-2233. <https://doi.org/10.1074/jbc.274.4.2225>
27. Gabai, V. L., Mabuchi, K., Mosser, D. D., Sherman, M. Y. (2002) Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factorinduced apoptosis. Mol. Cell Biol. 22, 3415-3424. <https://doi.org/10.1128/MCB.22.10.3415-3424.2002>
28. Gajate, C., Canto-Janez, E., Acuna, A. U., Amat-Guerri, F., Geijo, E., Santos-Beneit, A. M., Veldman, R. J., Mollinedo, F. (2004) Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis. J. Exp. Med. 200, 353-365. <https://doi.org/10.1084/jem.20040213>
29. Ghafourifar, P., Klein, S. D., Schucht, O., Schenk, U., Pruschy, M., Rocha, S., Richter, C. (1999) Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state. J. Biol. Chem. 274, 6080-6084. <https://doi.org/10.1074/jbc.274.10.6080>
30. Green, D. R. (2000) Apoptosis and sphingomyelin hydrolysis. The flip side. J. Cell Biol. 150, F5-F7. <https://doi.org/10.1083/jcb.150.1.F5>
31. Green, D. R., Kroemer, G. (2004) The pathophysiology of mitochondrial cell death. Science 305, 626-629. <https://doi.org/10.1126/science.1099320>
32. Gross, A., Yin, X. M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P., Korsmeyer, S. J. (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156-1163. <https://doi.org/10.1074/jbc.274.2.1156>
33. Gruss, H. J., Duyster, J., Herrmann, F. (1996) Structural and biological features of the TNF receptor and TNF ligand superfamilies: interactive signals in the pathobiology of Hodgkin’s disease. Ann. Oncol. 7 (Suppl 4), 19-26. <https://doi.org/10.1093/annonc/7.suppl_4.S19>
34. Gulbins, E. (2003) Regulation of death receptor signaling and apoptosis by ceramide. Pharmacol. Res. 47, 393-399. <https://doi.org/10.1016/S1043-6618(03)00052-5>
35. Hannun, Y. A. (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274, 1855-1859. <https://doi.org/10.1126/science.274.5294.1855>
36. Hartl, F. U., Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858. <https://doi.org/10.1126/science.1068408>
37. Haupt, S., Berger, M., Goldberg, Z., Haupt, Y. (2003) Apoptosis – the p53 network. J. Cell Sci. 116, 4077-4085. <https://doi.org/10.1242/jcs.00739>
38. Heibein, J. A., Barry, M., Motyka, B., Bleackley, R. C. (1999) Granzyme B-induced loss of mitochondrial inner membrane potential (∆Ψm) and cytochrome c release are caspase independent. J. Immunol. 163, 4683-4693. <https://doi.org/10.4049/jimmunol.163.9.4683>
39. Hymowitz, S. G., Christinger, H. W., Fuh, G., Ultsch, M., O’Connell, M., Kelley, R. F., Ashkenazi, A., de Vos, A. M. (1999) Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol. Cell 4, 563-571. Vol. 52. <https://doi.org/10.1016/S1097-2765(00)80207-5>
40. Jayadev, S., Liu, B., Bielawska, A. E., Lee, J. Y., Nazaire, F., Pushkareva, M. Y., Obeid, L. M., Hannun, Y. A. (1995) Role for ceramide in cell cycle arrest. J. Biol. Chem. 270, 2047-2052. <https://doi.org/10.1074/jbc.270.5.2047>
41. Jeremias, I., Kupatt, C., Baumann, B., Herr, I., Wirth, T., Debatin, K. M. (1998) Inhibition of nuclear factor κB activation attenuates apoptosis resistance in lymphoid cells. Blood 91, 4624-4631. <https://doi.org/10.1182/blood.V91.12.4624>
42. Kandasamy, K., Srinivasula, S. M., Alnemri, E. S., Thompson, C. B., Korsmeyer, S. J., Bryant, J. L., Srivastava, R. K. (2003) Involvement of proapoptotic molecules Bax and Bak in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced mitochondrial disruption and apoptosis: differential regulation of cytochrome c and Smac/DIABLO release. Cancer Res. 63, 1712-1721.
43. Kang, J., Kisenge, R. R., Toyoda, H., Tanaka, S., Bu, J., Azuma, E., Komada, Y. (2003) Chemical sensitization and regulation of TRAIL-induced apoptosis in a panel of B-lymphocytic leukaemia cell lines. Br. J. Haematol. 123, 921-932. <https://doi.org/10.1046/j.1365-2141.2003.04699.x>
44. Karawajew, L., Rhein, P., Czerwony, G., Ludwig, W. D. (2005) Stress-induced activation of the p53 tumor suppressor in leukemia cells and normal lymphocytes requires mitochondrial activity and reactive oxygen species. Blood 105, 4767-4775. <https://doi.org/10.1182/blood-2004-09-3428>
45. Kass, G. E., Eriksson, J. E., Weis, M., Orrenius, S., Chow, S. C. (1996) Chromatin condensation during apoptosis requires ATP. Biochem. J. 318 ( Pt 3), 749-752. <https://doi.org/10.1042/bj3180749>
46. Kennedy, S. G., Kandel, E. S., Cross, T. K., Hay, N. (1999) Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol. Cell Biol. 19, 5800-5810. <https://doi.org/10.1128/MCB.19.8.5800>
47. Kischkel, F. C., Lawrence, D. A., Tinel, A., LeBlanc, H., Virmani, A., Schow, P., Gazdar, A., Blenis, J., Arnott, D., Ashkenazi, A. (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase8. J. Biol. Chem. 276, 46639-46646. <https://doi.org/10.1074/jbc.M105102200>
48. Kivinen, K., Kallajoki, M., Taimen, P. (2005) Caspase-3 is required in the apoptotic disintegration of the nuclear matrix. Exp. Cell Res. 311, 62-73. <https://doi.org/10.1016/j.yexcr.2005.08.006>
49. Kluck, R. M., Bossy-Wetzel, E., Green, D. R., Newmeyer, D. D. (1997a) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132-1136. <https://doi.org/10.1126/science.275.5303.1132>
50. Kroemer, G., Reed, J. C. (2000) Mitochondrial control of cell death. Nat. Med. 6, 513-519. <https://doi.org/10.1038/74994>
51. Kuwana, T., Smith, J. J., Muzio, M., Dixit, V., Newmeyer, D. D., Kornbluth, S. (1998) Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J. Biol. Chem. 273, 16589-16594. <https://doi.org/10.1074/jbc.273.26.16589>
52. Lee, Y. J., Amoscato, A. A. (2004) TRAIL and ceramide. Vitam. Horm. 67, 229-255. <https://doi.org/10.1016/S0083-6729(04)67013-0>
53. Letai, A., Bassik, M. C., Walensky, L. D., Sorcinelli, M. D., Weiler, S., Korsmeyer, S. J. (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183-192. <https://doi.org/10.1016/S1535-6108(02)00127-7>
54. Li, H., Zhu, H., Xu, C. J., Yuan, J. (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501. <https://doi.org/10.1016/S0092-8674(00)81590-1>
55. Li, L. Y., Luo, X., Wang, X. (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99. <https://doi.org/10.1038/35083620>
56. Lin, Y., Devin, A., Cook, A., Keane, M. M., Kelliher, M., Lipkowitz, S., Liu, Z. G. (2000) The death domain kinase RIP is essential for TRAIL (Apo2L)-induced activation of IκB kinase and c-Jun N-terminal kinase. Mol. Cell Biol. 20, 6638-6645. <https://doi.org/10.1128/MCB.20.18.6638-6645.2000>
57. Liston, P., Fong, W. G., Korneluk, R. G. (2003) The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22, 8568-8580. <https://doi.org/10.1038/sj.onc.1207101>
58. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157. <https://doi.org/10.1016/S0092-8674(00)80085-9>
59. Lord, S. J., Rajotte, R. V., Korbutt, G. S., Bleackley, R. C. (2003) Granzyme B: a natural born killer. Immunol. Rev. 193, 31-38. <https://doi.org/10.1034/j.1600-065X.2003.00044.x>
60. Luo, X., Budihardjo, I., Zou, H., Slaughter, C., Wang, X. (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490. <https://doi.org/10.1016/S0092-8674(00)81589-5>
61. MacEwan, D. J. (2002) TNF ligands and receptors – a matter of life and death. Br. J. Pharmacol. 135, 855-875. <https://doi.org/10.1038/sj.bjp.0704549>
62. Malisan, F., Testi, R. (2003) Mitochondrial lipids as apoptosis regulators. Curr. Med. Chem. 10, 1573-1580. <https://doi.org/10.2174/0929867033457188>
63. Marchenko, N. D., Zaika, A., Moll, U. M. (2000) Death signalinduced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202-16212. <https://doi.org/10.1074/jbc.275.21.16202>
64. Mathias, S., Pena, L. A., Kolesnick, R. N. (1998) Signal transduction of stress via ceramide. Biochem. J. 335 ( Pt 3), 465-480. <https://doi.org/10.1042/bj3350465>
65. Metkar, S. S., Wang, B., Ebbs, M. L., Kim, J. H., Lee, Y. J., Raja, S. M., Froelich, C. J. (2003) Granzyme B activates procaspase-3 which signals a mitochondrial amplification loop for maximal apoptosis. J. Cell Biol. 160, 875-885. <https://doi.org/10.1083/jcb.200210158>
66. Miyaji, M., Jin, Z. X., Yamaoka, S., Amakawa, R., Fukuhara, S., Sato, S. B., Kobayashi, T., Domae, N., Mimori, T., Bloom, E. T., Okazaki, T., Umehara, H. (2005) Role of membrane sphingomyelin and ceramide in platform formation for Fasmediated apoptosis. J. Exp. Med. 202, 249-259. <https://doi.org/10.1084/jem.20041685>
67. Mosser, D. D., Caron, A. W., Bourget, L., Meriin, A. B., Sherman, M. Y., Morimoto, R. I., Massie, B. (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol. Cell Biol. 20, 7146-7159. <https://doi.org/10.1128/MCB.20.19.7146-7159.2000>
68. Motyka, B., Korbutt, G., Pinkoski, M. J., Heibein, J. A., Caputo, A., Hobman, M., Barry, M., Shostak, I., Sawchuk, T., Holmes, C. F., Gauldie, J., Bleackley, R. C. (2000) Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103, 491-500. <https://doi.org/10.1016/S0092-8674(00)00140-9>
69. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O’Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E., Dixit, V. M. (1996) FLICE, a novel FADD-homologous ICE/CED3-like protease, is recruited to the CD95 (Fas/APO-1) deathinducing signaling complex. Cell 85, 817-827. <https://doi.org/10.1016/S0092-8674(00)81266-0>
70. Nagata, S. (1997) Apoptosis by death factor. Cell 88, 355-365. <https://doi.org/10.1016/S0092-8674(00)81874-7>
71. Nagata, S. (2000) Apoptotic DNA fragmentation. Exp. Cell Res. 256, 12-18. <https://doi.org/10.1006/excr.2000.4834>
72. Nunez, G., Benedict, M. A., Hu, Y., Inohara, N. (1998) Caspases: the proteases of the apoptotic pathway. Oncogene 17, 3237-3245. <https://doi.org/10.1038/sj.onc.1202581>
73. Oakes, S. A., Opferman, J. T., Pozzan, T., Korsmeyer, S. J., Scorrano, L. (2003) Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochem. Pharmacol. 66, 1335-1340. <https://doi.org/10.1016/S0006-2952(03)00482-9>
74. Obeid, L. M., Hannun, Y. A. (1995) Ceramide: a stress signal and mediator of growth suppression and apoptosis. J. Cell Biochem. 58, 191-198. <https://doi.org/10.1002/jcb.240580208>
75. Pan, G., Ni, J., Wei, Y. F., Yu, G., Gentz, R., Dixit, V. M. (1997a) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277, 815-818. <https://doi.org/10.1126/science.277.5327.815>
76. Pan, G., O’Rourke, K., Chinnaiyan, A. M., Gentz, R., Ebner, R., Ni, J., Dixit, V. M. (1997b) The receptor for the cytotoxic ligand TRAIL. Science 276, 111-113. <https://doi.org/10.1126/science.276.5309.111>
77. Petak, I., Houghton, J.A. (2001) Shared pathways: death receptors and cytotoxic drugs in cancer therapy. Pathol. Oncol. Res. 7, 95-106. <https://doi.org/10.1007/BF03032574>
78. Petrosillo, G., Ruggiero, F. M., Pistolese, M., Paradies, G. (2004) Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms: role of cardiolipin. J. Biol. Chem. 279, 53103-53108. <https://doi.org/10.1074/jbc.M407500200>
79. Pinkoski, M. J., Hobman, M., Heibein, J. A., Tomaselli, K., Li, F., Seth, P., Froelich, C. J., Bleackley, R. C. (1998) Entry and trafficking of granzyme B in target cells during granzyme Bperforin-mediated apoptosis. Blood 92, 1044-1054. <https://doi.org/10.1182/blood.V92.3.1044>
80. Pinkoski, M. J., Waterhouse, N. J., Heibein, J. A., Wolf, B. B., Kuwana, T., Goldstein, J. C., Newmeyer, D. D., Bleackley, R. C., Green, D. R. (2001) Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway. J. Biol. Chem. 276, 12060-12067. <https://doi.org/10.1074/jbc.M009038200>
81. Pitti, R. M., Marsters, S. A., Ruppert, S., Donahue, C. J., Moore, A., Ashkenazi, A. (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 271, 12687-12690. <https://doi.org/10.1074/jbc.271.22.12687>
82. Rao, R. V., Bredesen, D. E. (2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr. Opin. Cell Biol. 16, 653-662. <https://doi.org/10.1016/j.ceb.2004.09.012>
83. Rao, L., Perez, D., White, E. (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell Biol. 135, 1441-1455. <https://doi.org/10.1083/jcb.135.6.1441>
84. Rao, R. V., Hermel, E., Castro-Obregon, S., del Rio, G., Ellerby, L. M., Ellerby, H. M., Bredesen, D. E. (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J. Biol. Chem. 276, 33869-33874. <https://doi.org/10.1074/jbc.M102225200>
85. Rao, R. V., Ellerby, H. M., Bredesen, D. E. (2004a) Coupling endoplasmic reticulum stress to the cell death program. Cell Death. Differ. 11, 372-380. <https://doi.org/10.1038/sj.cdd.4401378>
86. Rao, R. V., Poksay, K. S., Castro-Obregon, S., Schilling, B., Row, R. H., del Rio, G., Gibson, B. W., Ellerby, H. M., Bredesen, D. E. (2004b) Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J. Biol. Chem. 279, 177-187. <https://doi.org/10.1074/jbc.M304490200>
87. Riccioni, R., Pasquini, L., Mariani, G., Saulle, E., Rossini, A., Diverio, D., Pelosi, E., Vitale, A., Chierichini, A., Cedrone, M., Foa, R., Lo, C. F., Peschle, C., Testa, U. (2005) TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica 90, 612-624.
88. Robertson, J. D., Orrenius, S., Zhivotovsky, B. (2000) Review: nuclear events in apoptosis. J. Struct. Biol. 129, 346-358. <https://doi.org/10.1006/jsbi.2000.4254>
89. Rossi, D., Gaidano, G. (2003) Messengers of cell death: apoptotic signaling in health and disease. Haematologica 88, 212-218.
90. Ruffolo, S. C., Breckenridge, D. G., Nguyen, M., Goping, I. S., Gross, A., Korsmeyer, S. J., Li, H., Yuan, J., Shore, G. C. (2000) BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ. 7, 1101-1108. <https://doi.org/10.1038/sj.cdd.4400739>
91. Sahara, S., Aoto, M., Eguchi, Y., Imamoto, N., Yoneda, Y., Tsujimoto, Y. (1999) Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401, 168-173. <https://doi.org/10.1038/43678>
92. Sakahira, H., Enari, M., Nagata, S. (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99. <https://doi.org/10.1038/34214>
93. Schuler, M., Bossy-Wetzel, E., Goldstein, J. C., Fitzgerald, P., Green, D. R. (2000) p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J. Biol. Chem. 275, 7337-7342. <https://doi.org/10.1074/jbc.275.10.7337>
94. Scorrano, L., Oakes, S. A., Opferman, J. T., Cheng, E. H., Sorcinelli, M. D., Pozzan, T., Korsmeyer, S. J. (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135-139. <https://doi.org/10.1126/science.1081208>
95. Seol, D. W., Li, J., Seol, M. H., Park, S. Y., Talanian, R. V., Billiar, T. R. (2001) Signaling events triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL): caspase-8 is required for TRAIL-induced apoptosis. Cancer Res. 61, 1138-1143.
96. Sheikh, M. S., Huang, Y. (2004) TRAIL death receptors, Bcl-2 protein family, and endoplasmic reticulum calcium pool. Vitam. Horm. 67, 169-188. <https://doi.org/10.1016/S0083-6729(04)67010-5>
97. Sheridan, J. P., Marsters, S. A., Pitti, R. M., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C. L., Baker, K., Wood, W. I., Goddard, A. D., Godowski, P., Ashkenazi, A. (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818-821. <https://doi.org/10.1126/science.277.5327.818>
98. Shi, Y. (2004) Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci. 13, 1979-1987. <https://doi.org/10.1110/ps.04789804>
99. Shipman, C. M., Croucher, P. I. (2003) Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res. 63, 912-916.
100. Siskind, L. J., Kolesnick, R. N., Colombini, M. (2002) Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J. Biol. Chem. 277, 26796-26803. <https://doi.org/10.1074/jbc.M200754200>
101. Suhara, T., Kim, H. S., Kirshenbaum, L. A., Walsh, K. (2002) Suppression of Akt signaling induces Fas ligand expression: involvement of caspase and Jun kinase activation in Aktmediated Fas ligand regulation. Mol. Cell Biol. 22, 680-691. <https://doi.org/10.1128/MCB.22.2.680-691.2002>
102. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prevost, M. C., Alzari, P. M., Kroemer, G. (1999a) Mitochondrial release of caspase-2 and -9 during the apoptotic process. J. Exp. Med. 189, 381-394. <https://doi.org/10.1084/jem.189.2.381>
103. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., Kroemer, G. (1999b) Molecular characterization of mitochondrial apoptosisinducing factor. Nature 397, 441-446. <https://doi.org/10.1038/17135>
104. Tang, G., Minemoto, Y., Dibling, B., Purcell, N. H., Li, Z., Karin, M., Lin, A. (2001) Inhibition of JNK activation through NFκB target genes. Nature 414, 313-317. <https://doi.org/10.1038/35104568>
105. Tepper, C. G., Jayadev, S., Liu, B., Bielawska, A., Wolff, R., Yonehara, S., Hannun, Y. A., Seldin, M. F. (1995) Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc. Natl. Acad. Sci. USA 92, 8443-8447. <https://doi.org/10.1073/pnas.92.18.8443>
106. Testa, U. (2004) Apoptotic mechanisms in the control of erythropoiesis. Leukemia 18, 1176-1199. <https://doi.org/10.1038/sj.leu.2403383>
107. Thorburn, A. (2004) Death receptor-induced cell killing. Cell Signal. 16, 139-144. <https://doi.org/10.1016/j.cellsig.2003.08.007>
108. Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nimnual, A., Bar-Sagi, D., Jones, S. N., Flavell, R. A., Davis, Vol. 52 R. J. (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870-874. <https://doi.org/10.1126/science.288.5467.870>
109. Trapani, J. A., Smyth, M. J., Apostolidis, V. A., Dawson, M., Browne, K. A. (1994) Granule serine proteases are normal nuclear constituents of natural killer cells. J. Biol. Chem. 269, 18359-18365. <https://doi.org/10.1016/S0021-9258(17)32315-3>
110. Trapani, J. A., Jans, P., Smyth, M. J., Froelich, C. J., Williams, E. A., Sutton, V. R., Jans, D. A. (1998) Perforin-dependent nuclear entry of granzyme B precedes apoptosis, and is not a consequence of nuclear membrane dysfunction. Cell Death. Differ. 5, 488-496. <https://doi.org/10.1038/sj.cdd.4400373>
111. Tsuruta, F., Sunayama, J., Mori, Y., Hattori, S., Shimizu, S., Tsujimoto, Y., Yoshioka, K., Masuyama, N., Gotoh, Y. (2004) JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J. 23, 1889-1899. <https://doi.org/10.1038/sj.emboj.7600194>
112. Verkhratsky, A., Toescu, E. C. (2003) Endoplasmic reticulum Ca(2+) homeostasis and neuronal death. J. Cell Mol. Med. 7, 351-361. <https://doi.org/10.1111/j.1582-4934.2003.tb00238.x>
113. Voorhees, P. M., Dees, E. C., O’Neil, B., Orlowski, R. Z. (2003) The proteasome as a target for cancer therapy. Clin. Cancer Res. 9, 6316-6325.
114. Walczak, H., Degli-Esposti, M. A., Johnson, R. S., Smolak, P. J., Waugh, J. Y., Boiani, N., Timour, M. S., Gerhart, M. J., Schooley, K. A., Smith, C. A., Goodwin, R. G., Rauch, C. T. (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J. 16, 5386-5397. <https://doi.org/10.1093/emboj/16.17.5386>
115. Watanabe, M., Kitano, T., Kondo, T., Yabu, T., Taguchi, Y., Tashima, M., Umehara, H., Domae, N., Uchiyama, T., Okazaki, T. (2004) Increase of nuclear ceramide through caspase-3-dependent regulation of the “sphingomyelin cycle” in Fas-induced apoptosis. Cancer Res. 64, 1000-1007. <https://doi.org/10.1158/0008-5472.CAN-03-1383>
116. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., Korsmeyer, S. J. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727-730. <https://doi.org/10.1126/science.1059108>
117. Wu, D., Ingram, A., Lahti, J. H., Mazza, B., Grenet, J., Kapoor, A., Liu, L., Kidd, V. J., Tang, D. (2002) Apoptotic release of histones from nucleosomes. J. Biol. Chem. 277, 12001-12008. <https://doi.org/10.1074/jbc.M109219200>
118. Wu, G. S., Kim, K., El Deiry, W. S. (2000) KILLER/DR5, a novel DNA-damage inducible death receptor gene, links the p53-tumor suppressor to caspase activation and apoptotic death. Adv. Exp. Med. Biol. 465, 143-151. <https://doi.org/10.1007/0-306-46817-4_13>
119. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., Wang, X. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132. <https://doi.org/10.1126/science.275.5303.1129>
120. Yang, Y. L., Li, X. M. (2000) The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res. 10, 169-177. <https://doi.org/10.1038/sj.cr.7290046>
121. Zhang, H. G., Wang, J., Yang, X., Hsu, H. C., Mountz, J. D. (2004) Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 23, 2009-2015. <https://doi.org/10.1038/sj.onc.1207373>
122. Zong, W. X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q. C., Yuan, J., Thompson, C. B. (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J. Cell Biol. 162, 59-69. <https://doi.org/10.1083/jcb.200302084>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive