Fol. Biol. 2006, 52, 34-44
https://doi.org/10.14712/fb2006052010034
Cell Death Signalling Pathways in the Pathogenesis and Therapy of Haematologic Malignancies: Overview of Apoptotic Pathways
References
1. 2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bakmediated permeabilization. EMBO J. 22, 4385-4399.
< , D., Gaume, B., Karbowski, M., Sharpe, J. C., Cecconi, F., Youle, R. J. (https://doi.org/10.1093/emboj/cdg423>
2. 1998) Death receptors: signaling and modulation. Science 281, 1305-1308.
< , A., Dixit, V. M. (https://doi.org/10.1126/science.281.5381.1305>
3. 2000) Granzyme B short-circuits the need for caspase 8 activity during granulemediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol. Cell Biol. 20, 3781-3794.
< , M., Heibein, J. A., Pinkoski, M. J., Lee, S. F., Moyer, R. W., Green, D. R., Bleackley, R. C. (https://doi.org/10.1128/MCB.20.11.3781-3794.2000>
4. 2004) Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J. 23, 1207-1216.
< , M. C., Scorrano, L., Oakes, S. A., Pozzan, T., Korsmeyer, S. J. (https://doi.org/10.1038/sj.emboj.7600104>
5. 2005) Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J. Clin. Invest. 115, 2633-2639.
< , H. M. (https://doi.org/10.1172/JCI26471>
6. 2001) Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 15, 2669-2679.
< , H., El Bawab, S., Hannun, Y. A., Obeid, L. M. (https://doi.org/10.1096/fj.01-0539com>
7. 2003) A unified model for apical caspase activation. Mol. Cell 11, 529-541.
< , K. M., Renatus, M., Scott, F. L., Sperandio, S., Shin, H., Pedersen, I. M., Ricci, J. E., Edris, W. A., Sutherlin, D. P., Green, D. R., Salvesen, G. S. (https://doi.org/10.1016/S1097-2765(03)00051-0>
8. 2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22, 8608-8618.
< , D. G., Germain, M., Mathai, J. P., Nguyen, M., Shore, G. C. (https://doi.org/10.1038/sj.onc.1207108>
9. 2004) Calcium, ATP, and ROS: a mitochondrial lovehate triangle. Am. J. Physiol. Cell Physiol. 287, C817-C833.
< , P. S., Yoon, Y., Robotham, J. L., Anders, M. W., Sheu, S. S. (https://doi.org/10.1152/ajpcell.00139.2004>
10. 2002) Initiator caspases in apoptosis signaling pathways. Apoptosis 7, 313-319.
< , M., Wang, J. (https://doi.org/10.1023/A:1016167228059>
11. 2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAXand BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705-711.
< , E. H., Wei, M. C., Weiler, S., Flavell, R. A., Mak, T. W., Lindsten, T., Korsmeyer, S. J. (https://doi.org/10.1016/S1097-2765(01)00320-3>
12. 1996) FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptorinduced apoptosis. J. Biol. Chem. 271, 4961-4965.
< , A. M., Tepper, C. G., Seldin, M. F., O’Rourke, K., Kischkel, F. C., Hellbardt, S., Krammer, P. H., Peter, M. E., Dixit, V. M. (https://doi.org/10.1074/jbc.271.9.4961>
13. 1999) Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96, 615-624.
< , J. J., Li, H., Salvesen, G. S., Yuan, J., Wagner, G. (https://doi.org/10.1016/S0092-8674(00)80572-3>
14. 2001) Baculoviruses and apoptosis: the good, the bad, and the ugly. Cell Death. Differ. 8, 137-143.
< , R. J. (https://doi.org/10.1038/sj.cdd.4400821>
15. 2000) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J. 14, 729-739.
< , E., Susin, S. A., Zamzami, N., Ferri, K. F., Irinopoulou, T., Larochette, N., Prevost, M. C., Leber, B., Andrews, D., Penninger, J., Kroemer, G. (https://doi.org/10.1096/fasebj.14.5.729>
16. 2000) Dependence of granzyme B-mediated cell death on a pathway regulated by Bcl-2 or its viral homolog, BHRF1. Cell Death. Differ. 7, 973-983.
< , J. E., Sutton, V. R., Smyth, M. J., Trapani, J. A. (https://doi.org/10.1038/sj.cdd.4400725>
17. 2003a) A JNKdependent pathway is required for TNFα-induced apoptosis. Cell 115, 61-70.
< , Y., Ren, X., Yang, L., Lin, Y., Wu, X. (https://doi.org/10.1016/S0092-8674(03)00757-8>
18. 2001) Involvement of p38 in apoptosis-associated membrane blebbing and nuclear condensation. Mol. Biol. Cell 12, 1569-1582.
< , R. G., Huot, J., Valerie, K., Landry, J. (https://doi.org/10.1091/mbc.12.6.1569>
19. 1999) IAP family proteins – suppressors of apoptosis. Genes Dev. 13, 239-252.
< , Q. L., Reed, J. C. (https://doi.org/10.1101/gad.13.3.239>
20. 2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42.
< , C., Fang, M., Li, Y., Li, L., Wang, X. (https://doi.org/10.1016/S0092-8674(00)00008-8>
21. 1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424.
< , W. C., Martins, L. M., Kaufmann, S. H. (https://doi.org/10.1146/annurev.biochem.68.1.383>
22. 1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J. Biol. Chem. 273, 14363-14367.
< , J. G., McDonnell, P., Burke, M. B., Deen, K. C., Lyn, S., Silverman, C., Dul, E., Appelbaum, E. R., Eichman, C., DiPrinzio, R., Dodds, R. A., James, I. E., Rosenberg, M., Lee, J. C., Young, P. R. (https://doi.org/10.1074/jbc.273.23.14363>
23. 1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50.
< , M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., Nagata, S. (https://doi.org/10.1038/34112>
24. 2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J. Intern. Med. 258, 479-517.
< , B., Orrenius, S. (https://doi.org/10.1111/j.1365-2796.2005.01570.x>
25. 2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907-1916.
< , S. L., Cookson, B. T. (https://doi.org/10.1128/IAI.73.4.1907-1916.2005>
26. 1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 274, 2225-2233.
< , D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G., Green, D. R. (https://doi.org/10.1074/jbc.274.4.2225>
27. 2002) Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factorinduced apoptosis. Mol. Cell Biol. 22, 3415-3424.
< , V. L., Mabuchi, K., Mosser, D. D., Sherman, M. Y. (https://doi.org/10.1128/MCB.22.10.3415-3424.2002>
28. 2004) Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis. J. Exp. Med. 200, 353-365.
< , C., Canto-Janez, E., Acuna, A. U., Amat-Guerri, F., Geijo, E., Santos-Beneit, A. M., Veldman, R. J., Mollinedo, F. (https://doi.org/10.1084/jem.20040213>
29. 1999) Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state. J. Biol. Chem. 274, 6080-6084.
< , P., Klein, S. D., Schucht, O., Schenk, U., Pruschy, M., Rocha, S., Richter, C. (https://doi.org/10.1074/jbc.274.10.6080>
30. 2000) Apoptosis and sphingomyelin hydrolysis. The flip side. J. Cell Biol. 150, F5-F7.
< , D. R. (https://doi.org/10.1083/jcb.150.1.F5>
31. 2004) The pathophysiology of mitochondrial cell death. Science 305, 626-629.
< , D. R., Kroemer, G. (https://doi.org/10.1126/science.1099320>
32. 1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156-1163.
< , A., Yin, X. M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P., Korsmeyer, S. J. (https://doi.org/10.1074/jbc.274.2.1156>
33. 1996) Structural and biological features of the TNF receptor and TNF ligand superfamilies: interactive signals in the pathobiology of Hodgkin’s disease. Ann. Oncol. 7 (Suppl 4), 19-26.
< , H. J., Duyster, J., Herrmann, F. (https://doi.org/10.1093/annonc/7.suppl_4.S19>
34. 2003) Regulation of death receptor signaling and apoptosis by ceramide. Pharmacol. Res. 47, 393-399.
< , E. (https://doi.org/10.1016/S1043-6618(03)00052-5>
35. 1996) Functions of ceramide in coordinating cellular responses to stress. Science 274, 1855-1859.
< , Y. A. (https://doi.org/10.1126/science.274.5294.1855>
36. 2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858.
< , F. U., Hayer-Hartl, M. (https://doi.org/10.1126/science.1068408>
37. 2003) Apoptosis – the p53 network. J. Cell Sci. 116, 4077-4085.
< , S., Berger, M., Goldberg, Z., Haupt, Y. (https://doi.org/10.1242/jcs.00739>
38. 1999) Granzyme B-induced loss of mitochondrial inner membrane potential (∆Ψm) and cytochrome c release are caspase independent. J. Immunol. 163, 4683-4693.
< , J. A., Barry, M., Motyka, B., Bleackley, R. C. (https://doi.org/10.4049/jimmunol.163.9.4683>
39. 1999) Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol. Cell 4, 563-571. Vol. 52.
< , S. G., Christinger, H. W., Fuh, G., Ultsch, M., O’Connell, M., Kelley, R. F., Ashkenazi, A., de Vos, A. M. (https://doi.org/10.1016/S1097-2765(00)80207-5>
40. 1995) Role for ceramide in cell cycle arrest. J. Biol. Chem. 270, 2047-2052.
< , S., Liu, B., Bielawska, A. E., Lee, J. Y., Nazaire, F., Pushkareva, M. Y., Obeid, L. M., Hannun, Y. A. (https://doi.org/10.1074/jbc.270.5.2047>
41. 1998) Inhibition of nuclear factor κB activation attenuates apoptosis resistance in lymphoid cells. Blood 91, 4624-4631.
< , I., Kupatt, C., Baumann, B., Herr, I., Wirth, T., Debatin, K. M. (https://doi.org/10.1182/blood.V91.12.4624>
42. 2003) Involvement of proapoptotic molecules Bax and Bak in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced mitochondrial disruption and apoptosis: differential regulation of cytochrome c and Smac/DIABLO release. Cancer Res. 63, 1712-1721.
, K., Srinivasula, S. M., Alnemri, E. S., Thompson, C. B., Korsmeyer, S. J., Bryant, J. L., Srivastava, R. K. (
43. 2003) Chemical sensitization and regulation of TRAIL-induced apoptosis in a panel of B-lymphocytic leukaemia cell lines. Br. J. Haematol. 123, 921-932.
< , J., Kisenge, R. R., Toyoda, H., Tanaka, S., Bu, J., Azuma, E., Komada, Y. (https://doi.org/10.1046/j.1365-2141.2003.04699.x>
44. 2005) Stress-induced activation of the p53 tumor suppressor in leukemia cells and normal lymphocytes requires mitochondrial activity and reactive oxygen species. Blood 105, 4767-4775.
< , L., Rhein, P., Czerwony, G., Ludwig, W. D. (https://doi.org/10.1182/blood-2004-09-3428>
45. 1996) Chromatin condensation during apoptosis requires ATP. Biochem. J. 318 ( Pt 3), 749-752.
< , G. E., Eriksson, J. E., Weis, M., Orrenius, S., Chow, S. C. (https://doi.org/10.1042/bj3180749>
46. 1999) Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol. Cell Biol. 19, 5800-5810.
< , S. G., Kandel, E. S., Cross, T. K., Hay, N. (https://doi.org/10.1128/MCB.19.8.5800>
47. 2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase8. J. Biol. Chem. 276, 46639-46646.
< , F. C., Lawrence, D. A., Tinel, A., LeBlanc, H., Virmani, A., Schow, P., Gazdar, A., Blenis, J., Arnott, D., Ashkenazi, A. (https://doi.org/10.1074/jbc.M105102200>
48. 2005) Caspase-3 is required in the apoptotic disintegration of the nuclear matrix. Exp. Cell Res. 311, 62-73.
< , K., Kallajoki, M., Taimen, P. (https://doi.org/10.1016/j.yexcr.2005.08.006>
49. 1997a) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132-1136.
< , R. M., Bossy-Wetzel, E., Green, D. R., Newmeyer, D. D. (https://doi.org/10.1126/science.275.5303.1132>
50. 2000) Mitochondrial control of cell death. Nat. Med. 6, 513-519.
< , G., Reed, J. C. (https://doi.org/10.1038/74994>
51. 1998) Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J. Biol. Chem. 273, 16589-16594.
< , T., Smith, J. J., Muzio, M., Dixit, V., Newmeyer, D. D., Kornbluth, S. (https://doi.org/10.1074/jbc.273.26.16589>
52. 2004) TRAIL and ceramide. Vitam. Horm. 67, 229-255.
< , Y. J., Amoscato, A. A. (https://doi.org/10.1016/S0083-6729(04)67013-0>
53. 2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183-192.
< , A., Bassik, M. C., Walensky, L. D., Sorcinelli, M. D., Weiler, S., Korsmeyer, S. J. (https://doi.org/10.1016/S1535-6108(02)00127-7>
54. 1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501.
< , H., Zhu, H., Xu, C. J., Yuan, J. (https://doi.org/10.1016/S0092-8674(00)81590-1>
55. 2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99.
< , L. Y., Luo, X., Wang, X. (https://doi.org/10.1038/35083620>
56. 2000) The death domain kinase RIP is essential for TRAIL (Apo2L)-induced activation of IκB kinase and c-Jun N-terminal kinase. Mol. Cell Biol. 20, 6638-6645.
< , Y., Devin, A., Cook, A., Keane, M. M., Kelliher, M., Lipkowitz, S., Liu, Z. G. (https://doi.org/10.1128/MCB.20.18.6638-6645.2000>
57. 2003) The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22, 8568-8580.
< , P., Fong, W. G., Korneluk, R. G. (https://doi.org/10.1038/sj.onc.1207101>
58. 1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157.
< , X., Kim, C. N., Yang, J., Jemmerson, R., Wang, X. (https://doi.org/10.1016/S0092-8674(00)80085-9>
59. 2003) Granzyme B: a natural born killer. Immunol. Rev. 193, 31-38.
< , S. J., Rajotte, R. V., Korbutt, G. S., Bleackley, R. C. (https://doi.org/10.1034/j.1600-065X.2003.00044.x>
60. 1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490.
< , X., Budihardjo, I., Zou, H., Slaughter, C., Wang, X. (https://doi.org/10.1016/S0092-8674(00)81589-5>
61. 2002) TNF ligands and receptors – a matter of life and death. Br. J. Pharmacol. 135, 855-875.
< , D. J. (https://doi.org/10.1038/sj.bjp.0704549>
62. 2003) Mitochondrial lipids as apoptosis regulators. Curr. Med. Chem. 10, 1573-1580.
< , F., Testi, R. (https://doi.org/10.2174/0929867033457188>
63. 2000) Death signalinduced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202-16212.
< , N. D., Zaika, A., Moll, U. M. (https://doi.org/10.1074/jbc.275.21.16202>
64. 1998) Signal transduction of stress via ceramide. Biochem. J. 335 ( Pt 3), 465-480.
< , S., Pena, L. A., Kolesnick, R. N. (https://doi.org/10.1042/bj3350465>
65. 2003) Granzyme B activates procaspase-3 which signals a mitochondrial amplification loop for maximal apoptosis. J. Cell Biol. 160, 875-885.
< , S. S., Wang, B., Ebbs, M. L., Kim, J. H., Lee, Y. J., Raja, S. M., Froelich, C. J. (https://doi.org/10.1083/jcb.200210158>
66. 2005) Role of membrane sphingomyelin and ceramide in platform formation for Fasmediated apoptosis. J. Exp. Med. 202, 249-259.
< , M., Jin, Z. X., Yamaoka, S., Amakawa, R., Fukuhara, S., Sato, S. B., Kobayashi, T., Domae, N., Mimori, T., Bloom, E. T., Okazaki, T., Umehara, H. (https://doi.org/10.1084/jem.20041685>
67. 2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol. Cell Biol. 20, 7146-7159.
< , D. D., Caron, A. W., Bourget, L., Meriin, A. B., Sherman, M. Y., Morimoto, R. I., Massie, B. (https://doi.org/10.1128/MCB.20.19.7146-7159.2000>
68. 2000) Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103, 491-500.
< , B., Korbutt, G., Pinkoski, M. J., Heibein, J. A., Caputo, A., Hobman, M., Barry, M., Shostak, I., Sawchuk, T., Holmes, C. F., Gauldie, J., Bleackley, R. C. (https://doi.org/10.1016/S0092-8674(00)00140-9>
69. 1996) FLICE, a novel FADD-homologous ICE/CED3-like protease, is recruited to the CD95 (Fas/APO-1) deathinducing signaling complex. Cell 85, 817-827.
< , M., Chinnaiyan, A. M., Kischkel, F. C., O’Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E., Dixit, V. M. (https://doi.org/10.1016/S0092-8674(00)81266-0>
70. 1997) Apoptosis by death factor. Cell 88, 355-365.
< , S. (https://doi.org/10.1016/S0092-8674(00)81874-7>
71. 2000) Apoptotic DNA fragmentation. Exp. Cell Res. 256, 12-18.
< , S. (https://doi.org/10.1006/excr.2000.4834>
72. 1998) Caspases: the proteases of the apoptotic pathway. Oncogene 17, 3237-3245.
< , G., Benedict, M. A., Hu, Y., Inohara, N. (https://doi.org/10.1038/sj.onc.1202581>
73. 2003) Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochem. Pharmacol. 66, 1335-1340.
< , S. A., Opferman, J. T., Pozzan, T., Korsmeyer, S. J., Scorrano, L. (https://doi.org/10.1016/S0006-2952(03)00482-9>
74. 1995) Ceramide: a stress signal and mediator of growth suppression and apoptosis. J. Cell Biochem. 58, 191-198.
< , L. M., Hannun, Y. A. (https://doi.org/10.1002/jcb.240580208>
75. 1997a) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277, 815-818.
< , G., Ni, J., Wei, Y. F., Yu, G., Gentz, R., Dixit, V. M. (https://doi.org/10.1126/science.277.5327.815>
76. 1997b) The receptor for the cytotoxic ligand TRAIL. Science 276, 111-113.
< , G., O’Rourke, K., Chinnaiyan, A. M., Gentz, R., Ebner, R., Ni, J., Dixit, V. M. (https://doi.org/10.1126/science.276.5309.111>
77. 2001) Shared pathways: death receptors and cytotoxic drugs in cancer therapy. Pathol. Oncol. Res. 7, 95-106.
< , I., Houghton, J.A. (https://doi.org/10.1007/BF03032574>
78. 2004) Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms: role of cardiolipin. J. Biol. Chem. 279, 53103-53108.
< , G., Ruggiero, F. M., Pistolese, M., Paradies, G. (https://doi.org/10.1074/jbc.M407500200>
79. 1998) Entry and trafficking of granzyme B in target cells during granzyme Bperforin-mediated apoptosis. Blood 92, 1044-1054.
< , M. J., Hobman, M., Heibein, J. A., Tomaselli, K., Li, F., Seth, P., Froelich, C. J., Bleackley, R. C. (https://doi.org/10.1182/blood.V92.3.1044>
80. 2001) Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway. J. Biol. Chem. 276, 12060-12067.
< , M. J., Waterhouse, N. J., Heibein, J. A., Wolf, B. B., Kuwana, T., Goldstein, J. C., Newmeyer, D. D., Bleackley, R. C., Green, D. R. (https://doi.org/10.1074/jbc.M009038200>
81. 1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 271, 12687-12690.
< , R. M., Marsters, S. A., Ruppert, S., Donahue, C. J., Moore, A., Ashkenazi, A. (https://doi.org/10.1074/jbc.271.22.12687>
82. 2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr. Opin. Cell Biol. 16, 653-662.
< , R. V., Bredesen, D. E. (https://doi.org/10.1016/j.ceb.2004.09.012>
83. 1996) Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell Biol. 135, 1441-1455.
< , L., Perez, D., White, E. (https://doi.org/10.1083/jcb.135.6.1441>
84. 2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J. Biol. Chem. 276, 33869-33874.
< , R. V., Hermel, E., Castro-Obregon, S., del Rio, G., Ellerby, L. M., Ellerby, H. M., Bredesen, D. E. (https://doi.org/10.1074/jbc.M102225200>
85. 2004a) Coupling endoplasmic reticulum stress to the cell death program. Cell Death. Differ. 11, 372-380.
< , R. V., Ellerby, H. M., Bredesen, D. E. (https://doi.org/10.1038/sj.cdd.4401378>
86. 2004b) Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J. Biol. Chem. 279, 177-187.
< , R. V., Poksay, K. S., Castro-Obregon, S., Schilling, B., Row, R. H., del Rio, G., Gibson, B. W., Ellerby, H. M., Bredesen, D. E. (https://doi.org/10.1074/jbc.M304490200>
87. 2005) TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica 90, 612-624.
, R., Pasquini, L., Mariani, G., Saulle, E., Rossini, A., Diverio, D., Pelosi, E., Vitale, A., Chierichini, A., Cedrone, M., Foa, R., Lo, C. F., Peschle, C., Testa, U. (
88. 2000) Review: nuclear events in apoptosis. J. Struct. Biol. 129, 346-358.
< , J. D., Orrenius, S., Zhivotovsky, B. (https://doi.org/10.1006/jsbi.2000.4254>
89. 2003) Messengers of cell death: apoptotic signaling in health and disease. Haematologica 88, 212-218.
, D., Gaidano, G. (
90. 2000) BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ. 7, 1101-1108.
< , S. C., Breckenridge, D. G., Nguyen, M., Goping, I. S., Gross, A., Korsmeyer, S. J., Li, H., Yuan, J., Shore, G. C. (https://doi.org/10.1038/sj.cdd.4400739>
91. 1999) Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401, 168-173.
< , S., Aoto, M., Eguchi, Y., Imamoto, N., Yoneda, Y., Tsujimoto, Y. (https://doi.org/10.1038/43678>
92. 1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99.
< , H., Enari, M., Nagata, S. (https://doi.org/10.1038/34214>
93. 2000) p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J. Biol. Chem. 275, 7337-7342.
< , M., Bossy-Wetzel, E., Goldstein, J. C., Fitzgerald, P., Green, D. R. (https://doi.org/10.1074/jbc.275.10.7337>
94. 2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135-139.
< , L., Oakes, S. A., Opferman, J. T., Cheng, E. H., Sorcinelli, M. D., Pozzan, T., Korsmeyer, S. J. (https://doi.org/10.1126/science.1081208>
95. 2001) Signaling events triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL): caspase-8 is required for TRAIL-induced apoptosis. Cancer Res. 61, 1138-1143.
, D. W., Li, J., Seol, M. H., Park, S. Y., Talanian, R. V., Billiar, T. R. (
96. 2004) TRAIL death receptors, Bcl-2 protein family, and endoplasmic reticulum calcium pool. Vitam. Horm. 67, 169-188.
< , M. S., Huang, Y. (https://doi.org/10.1016/S0083-6729(04)67010-5>
97. 1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818-821.
< , J. P., Marsters, S. A., Pitti, R. M., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C. L., Baker, K., Wood, W. I., Goddard, A. D., Godowski, P., Ashkenazi, A. (https://doi.org/10.1126/science.277.5327.818>
98. 2004) Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci. 13, 1979-1987.
< , Y. (https://doi.org/10.1110/ps.04789804>
99. 2003) Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res. 63, 912-916.
, C. M., Croucher, P. I. (
100. 2002) Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J. Biol. Chem. 277, 26796-26803.
< , L. J., Kolesnick, R. N., Colombini, M. (https://doi.org/10.1074/jbc.M200754200>
101. 2002) Suppression of Akt signaling induces Fas ligand expression: involvement of caspase and Jun kinase activation in Aktmediated Fas ligand regulation. Mol. Cell Biol. 22, 680-691.
< , T., Kim, H. S., Kirshenbaum, L. A., Walsh, K. (https://doi.org/10.1128/MCB.22.2.680-691.2002>
102. 1999a) Mitochondrial release of caspase-2 and -9 during the apoptotic process. J. Exp. Med. 189, 381-394.
< , S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prevost, M. C., Alzari, P. M., Kroemer, G. (https://doi.org/10.1084/jem.189.2.381>
103. 1999b) Molecular characterization of mitochondrial apoptosisinducing factor. Nature 397, 441-446.
< , S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., Kroemer, G. (https://doi.org/10.1038/17135>
104. 2001) Inhibition of JNK activation through NFκB target genes. Nature 414, 313-317.
< , G., Minemoto, Y., Dibling, B., Purcell, N. H., Li, Z., Karin, M., Lin, A. (https://doi.org/10.1038/35104568>
105. 1995) Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc. Natl. Acad. Sci. USA 92, 8443-8447.
< , C. G., Jayadev, S., Liu, B., Bielawska, A., Wolff, R., Yonehara, S., Hannun, Y. A., Seldin, M. F. (https://doi.org/10.1073/pnas.92.18.8443>
106. 2004) Apoptotic mechanisms in the control of erythropoiesis. Leukemia 18, 1176-1199.
< , U. (https://doi.org/10.1038/sj.leu.2403383>
107. 2004) Death receptor-induced cell killing. Cell Signal. 16, 139-144.
< , A. (https://doi.org/10.1016/j.cellsig.2003.08.007>
108. 2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870-874.
< , C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nimnual, A., Bar-Sagi, D., Jones, S. N., Flavell, R. A., Davis, Vol. 52 R. J. (https://doi.org/10.1126/science.288.5467.870>
109. 1994) Granule serine proteases are normal nuclear constituents of natural killer cells. J. Biol. Chem. 269, 18359-18365.
< , J. A., Smyth, M. J., Apostolidis, V. A., Dawson, M., Browne, K. A. (https://doi.org/10.1016/S0021-9258(17)32315-3>
110. 1998) Perforin-dependent nuclear entry of granzyme B precedes apoptosis, and is not a consequence of nuclear membrane dysfunction. Cell Death. Differ. 5, 488-496.
< , J. A., Jans, P., Smyth, M. J., Froelich, C. J., Williams, E. A., Sutton, V. R., Jans, D. A. (https://doi.org/10.1038/sj.cdd.4400373>
111. 2004) JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J. 23, 1889-1899.
< , F., Sunayama, J., Mori, Y., Hattori, S., Shimizu, S., Tsujimoto, Y., Yoshioka, K., Masuyama, N., Gotoh, Y. (https://doi.org/10.1038/sj.emboj.7600194>
112. 2003) Endoplasmic reticulum Ca(2+) homeostasis and neuronal death. J. Cell Mol. Med. 7, 351-361.
< , A., Toescu, E. C. (https://doi.org/10.1111/j.1582-4934.2003.tb00238.x>
113. 2003) The proteasome as a target for cancer therapy. Clin. Cancer Res. 9, 6316-6325.
, P. M., Dees, E. C., O’Neil, B., Orlowski, R. Z. (
114. 1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J. 16, 5386-5397.
< , H., Degli-Esposti, M. A., Johnson, R. S., Smolak, P. J., Waugh, J. Y., Boiani, N., Timour, M. S., Gerhart, M. J., Schooley, K. A., Smith, C. A., Goodwin, R. G., Rauch, C. T. (https://doi.org/10.1093/emboj/16.17.5386>
115. 2004) Increase of nuclear ceramide through caspase-3-dependent regulation of the “sphingomyelin cycle” in Fas-induced apoptosis. Cancer Res. 64, 1000-1007.
< , M., Kitano, T., Kondo, T., Yabu, T., Taguchi, Y., Tashima, M., Umehara, H., Domae, N., Uchiyama, T., Okazaki, T. (https://doi.org/10.1158/0008-5472.CAN-03-1383>
116. 2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727-730.
< , M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., Korsmeyer, S. J. (https://doi.org/10.1126/science.1059108>
117. 2002) Apoptotic release of histones from nucleosomes. J. Biol. Chem. 277, 12001-12008.
< , D., Ingram, A., Lahti, J. H., Mazza, B., Grenet, J., Kapoor, A., Liu, L., Kidd, V. J., Tang, D. (https://doi.org/10.1074/jbc.M109219200>
118. 2000) KILLER/DR5, a novel DNA-damage inducible death receptor gene, links the p53-tumor suppressor to caspase activation and apoptotic death. Adv. Exp. Med. Biol. 465, 143-151.
< , G. S., Kim, K., El Deiry, W. S. (https://doi.org/10.1007/0-306-46817-4_13>
119. 1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132.
< , J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., Wang, X. (https://doi.org/10.1126/science.275.5303.1129>
120. 2000) The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res. 10, 169-177.
< , Y. L., Li, X. M. (https://doi.org/10.1038/sj.cr.7290046>
121. 2004) Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 23, 2009-2015.
< , H. G., Wang, J., Yang, X., Hsu, H. C., Mountz, J. D. (https://doi.org/10.1038/sj.onc.1207373>
122. 2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J. Cell Biol. 162, 59-69.
< , W. X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q. C., Yuan, J., Thompson, C. B. (https://doi.org/10.1083/jcb.200302084>