Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2006, 52, 161-166

https://doi.org/10.14712/fb2006052050161

Distinct Co-regulation of Endogenous versus Transfected MITF-Dependent Tyrosinase Promoter

B. Šestáková, Jiří Vachtenheim

Laboratory of Molecular Biology, University Hospital, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic

Received July 2006
Accepted September 2006

References

1. Bentley, N. J., Eisen, T., Goding, C. R. (1994) Melanocytespecific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol. Cell Biol. 14, 7996-8006.
2. de la Serna, I., Ohkawa, Y., Higashi, C., Dutta, C., Osias, J., Kommajosyula, N., Tachibana, T., Imbalzano, A. N. (2006) The microphthalmia-associated transcription factor (MITF) requires SWI/SNF enzymes to activate melanocyte specific genes. J. Biol. Chem. 281, 20233-20241. <https://doi.org/10.1074/jbc.M512052200>
3. Drdova, B., Vachtenheim, J. (2004) Repression of the melanocyte-specific promoter of the microphthalmia-associated transcription factor by the adenoviral E1A 12S oncoprotein. Folia Biol. (Praha) 50, 159-166.
4. Frisch, S. M., Mymryk, J. S. (2002) Adenovirus-5 E1A: paradox and paradigm. Nat. Rev. Mol. Cell Biol. 3, 441-452. <https://doi.org/10.1038/nrm827>
5. Fuchs, M., Gerber, J., Drapkin, R., Sif, S., Ikura, T., Ogryzko, V., Lane, W. S., Nakatani, Y., Livingston, D. M. (2001) The p400 complex is an essential E1A transformation target. Cell 106, 297-307. <https://doi.org/10.1016/S0092-8674(01)00450-0>
6. Fuse, N., Yasumoto, K., Suzuki, H., Takahashi, K., Shibahara, S. (1996) Identification of a melanocyte-type promoter of the microphthalmia-associated transcription factor gene. Biochem. Biophys. Res. Commun. 219, 702-707. <https://doi.org/10.1006/bbrc.1996.0298>
7. Goding, C. R. (2000) Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 14, 1712-1728. <https://doi.org/10.1101/gad.14.14.1712>
8. Nechushtan, H., Razin, E. (2002) The function of MITF and associated proteins in mast cells. Mol. Immunol. 38, 1177-1180. <https://doi.org/10.1016/S0161-5890(02)00059-7>
9. Price, E. R., Ding, H. F., Badalian, T., Bhattacharya, S., Takemoto, C., Yao, T. P., Hemesath, T. J., Fisher, D. E. (1998) Lineage-specific signaling in melanocytes. C-kit stimulation recruits p300/CBP to microphthalmia. J. Biol. Chem. 273, 17983-17986. <https://doi.org/10.1074/jbc.273.29.17983>
10. Sato, S., Roberts, K., Gambino, G., Cook, A., Kouzarides, T., Goding, C. R. (1997) CBP/p300 as a co-factor for the Microphthalmia transcription factor. Oncogene 14, 3083-3092. <https://doi.org/10.1038/sj.onc.1201298>
11. Shibahara, S., Takeda, K., Yasumoto, K., Udono, T., Watanabe, K., Saito, H., Takahashi, K. (2001) Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation. J. Investig. Dermatol. Symp. Proc. 6, 99-104. <https://doi.org/10.1046/j.0022-202x.2001.00010.x>
12. Steingrimsson, E., Copeland, N. G., Jenkins, N. A. (2004) Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 38, 365-411. <https://doi.org/10.1146/annurev.genet.38.072902.092717>
13. Tachibana, M., Takeda, K., Nobukuni, Y., Urabe, K., Long, J. E., Meyers, K. A., Aaronson, S. A., Miki, T. (1996) Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat. Genet. 14, 50-54. <https://doi.org/10.1038/ng0996-50>
14. Vachtenheim, J., Novotna, H., Ghanem, G. (2001) Transcriptional repression of the microphthalmia gene in melanoma cells correlates with the unresponsiveness of target genes to ectopic microphthalmia-associated transcription factor. J. Invest. Dermatol. 117, 1505-1511. <https://doi.org/10.1046/j.0022-202x.2001.01563.x>
15. Vachtenheim, J., Drdová, B. (2004) A dominant negative mutant of microphthalmia transcription factor (MITF) lacking two transactivation domains suppresses transcription mediated by wild type MITF and a hyperactive MITF derivative. Pigment Cell Res. 17, 43-50. <https://doi.org/10.1046/j.1600-0749.2003.00108.x>
16. Wu, M., Hemesath, T. J., Takemoto, C. M., Horstmann, M. A., Wells, A. G., Price, E. R., Fisher, D. Z., Fisher, D. E. (2000) c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14, 301-312. <https://doi.org/10.1101/gad.14.3.301>
17. Yamamichi, N., Yamamichi-Nishina, M., Mizutani, T., Watanabe, H., Minoguchi, S., Kobayashi, N., Kimura, S., Ito, T., Yahagi, N., Ichinose, M., Omata, M., Iba, H. (2005) The Brm gene suppressed at the post-transcriptional level in various human cell lines is inducible by transient HDAC inhibitor treatment, which exhibits antioncogenic potential. Oncogene 24, 5471-5481. <https://doi.org/10.1038/sj.onc.1208716>
18. Yasumoto, K., Yokoyama, K., Shibata, K., Tomita, Y., Shibahara, S. (1994) Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol. Cell Biol. 14, 8058-8070.
19. Yavuzer, U., Keenan, E., Lowings, P., Vachtenheim, J., Currie, G., Goding, C. R. (1995) The Microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription. Oncogene 10, 123-134.
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive