Fol. Biol. 2006, 52, 161-166
https://doi.org/10.14712/fb2006052050161
Distinct Co-regulation of Endogenous versus Transfected MITF-Dependent Tyrosinase Promoter
References
1. 1994) Melanocytespecific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol. Cell Biol. 14, 7996-8006.
, N. J., Eisen, T., Goding, C. R. (
2. 2006) The microphthalmia-associated transcription factor (MITF) requires SWI/SNF enzymes to activate melanocyte specific genes. J. Biol. Chem. 281, 20233-20241.
< , I., Ohkawa, Y., Higashi, C., Dutta, C., Osias, J., Kommajosyula, N., Tachibana, T., Imbalzano, A. N. (https://doi.org/10.1074/jbc.M512052200>
3. 2004) Repression of the melanocyte-specific promoter of the microphthalmia-associated transcription factor by the adenoviral E1A 12S oncoprotein. Folia Biol. (Praha) 50, 159-166.
, B., Vachtenheim, J. (
4. 2002) Adenovirus-5 E1A: paradox and paradigm. Nat. Rev. Mol. Cell Biol. 3, 441-452.
< , S. M., Mymryk, J. S. (https://doi.org/10.1038/nrm827>
5. 2001) The p400 complex is an essential E1A transformation target. Cell 106, 297-307.
< , M., Gerber, J., Drapkin, R., Sif, S., Ikura, T., Ogryzko, V., Lane, W. S., Nakatani, Y., Livingston, D. M. (https://doi.org/10.1016/S0092-8674(01)00450-0>
6. 1996) Identification of a melanocyte-type promoter of the microphthalmia-associated transcription factor gene. Biochem. Biophys. Res. Commun. 219, 702-707.
< , N., Yasumoto, K., Suzuki, H., Takahashi, K., Shibahara, S. (https://doi.org/10.1006/bbrc.1996.0298>
7. 2000) Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 14, 1712-1728.
< , C. R. (https://doi.org/10.1101/gad.14.14.1712>
8. 2002) The function of MITF and associated proteins in mast cells. Mol. Immunol. 38, 1177-1180.
< , H., Razin, E. (https://doi.org/10.1016/S0161-5890(02)00059-7>
9. 1998) Lineage-specific signaling in melanocytes. C-kit stimulation recruits p300/CBP to microphthalmia. J. Biol. Chem. 273, 17983-17986.
< , E. R., Ding, H. F., Badalian, T., Bhattacharya, S., Takemoto, C., Yao, T. P., Hemesath, T. J., Fisher, D. E. (https://doi.org/10.1074/jbc.273.29.17983>
10. 1997) CBP/p300 as a co-factor for the Microphthalmia transcription factor. Oncogene 14, 3083-3092.
< , S., Roberts, K., Gambino, G., Cook, A., Kouzarides, T., Goding, C. R. (https://doi.org/10.1038/sj.onc.1201298>
11. 2001) Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation. J. Investig. Dermatol. Symp. Proc. 6, 99-104.
< , S., Takeda, K., Yasumoto, K., Udono, T., Watanabe, K., Saito, H., Takahashi, K. (https://doi.org/10.1046/j.0022-202x.2001.00010.x>
12. 2004) Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 38, 365-411.
< , E., Copeland, N. G., Jenkins, N. A. (https://doi.org/10.1146/annurev.genet.38.072902.092717>
13. 1996) Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat. Genet. 14, 50-54.
< , M., Takeda, K., Nobukuni, Y., Urabe, K., Long, J. E., Meyers, K. A., Aaronson, S. A., Miki, T. (https://doi.org/10.1038/ng0996-50>
14. 2001) Transcriptional repression of the microphthalmia gene in melanoma cells correlates with the unresponsiveness of target genes to ectopic microphthalmia-associated transcription factor. J. Invest. Dermatol. 117, 1505-1511.
< , J., Novotna, H., Ghanem, G. (https://doi.org/10.1046/j.0022-202x.2001.01563.x>
15. 2004) A dominant negative mutant of microphthalmia transcription factor (MITF) lacking two transactivation domains suppresses transcription mediated by wild type MITF and a hyperactive MITF derivative. Pigment Cell Res. 17, 43-50.
< , J., Drdová, B. (https://doi.org/10.1046/j.1600-0749.2003.00108.x>
16. 2000) c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14, 301-312.
< , M., Hemesath, T. J., Takemoto, C. M., Horstmann, M. A., Wells, A. G., Price, E. R., Fisher, D. Z., Fisher, D. E. (https://doi.org/10.1101/gad.14.3.301>
17. 2005) The Brm gene suppressed at the post-transcriptional level in various human cell lines is inducible by transient HDAC inhibitor treatment, which exhibits antioncogenic potential. Oncogene 24, 5471-5481.
< , N., Yamamichi-Nishina, M., Mizutani, T., Watanabe, H., Minoguchi, S., Kobayashi, N., Kimura, S., Ito, T., Yahagi, N., Ichinose, M., Omata, M., Iba, H. (https://doi.org/10.1038/sj.onc.1208716>
18. 1994) Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol. Cell Biol. 14, 8058-8070.
, K., Yokoyama, K., Shibata, K., Tomita, Y., Shibahara, S. (
19. 1995) The Microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription. Oncogene 10, 123-134.
, U., Keenan, E., Lowings, P., Vachtenheim, J., Currie, G., Goding, C. R. (