Fol. Biol. 2006, 52, 173-180
https://doi.org/10.14712/fb2006052050173
Regulation of Selectivity and Translocation of Aquaporins: an Update
References
1. 2002) Aquaporin water channels – from atomic structure to clinical medicine. J. Physiol. (Lond.) 542, 3-16.
< , P., King, L. S., Yasui, M., Guggino, W. B., Ottersen, O. P., Fujiyoshi, Y., Engel, A., Nielsen, S. (https://doi.org/10.1113/jphysiol.2002.020818>
2. 1989) The subcellular organization of MadinDarby canine kidney cells during the formation of a polarized epithelium J. Cell Biol. 109, 2817-2832.
< , R., Antony, C., Dotti, C., Karsenti, E., Stelzer, E., Simons, K. (https://doi.org/10.1083/jcb.109.6.2817>
3. 1998) The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin. Infect. Immun. 66, 1364-1369.
< , H., Hofmann, F., Olenik, C., Just, I., Aktories, K. (https://doi.org/10.1128/IAI.66.4.1364-1369.1998>
4. 2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc. Natl. Acad. Sci. USA 103, 269-274.
< , E., Wu, B., Holm, L. M., Schultz, J. E., Zeuthen, T. (https://doi.org/10.1073/pnas.0507225103>
5. 1992) Molecular cloning of the receptor for human antidiuretic hormone. Nature 357, 333-335.
< , M., Seibold, A., Gilbert, S., Ishido, M., Barberis, C., Antaramian, A., Brabet, P., Rosenthal, W. (https://doi.org/10.1038/357333a0>
6. 1990) Cytoskeletal control of centrioles movement during the establishment of polarity in Madin-Darby canine kidney cells. J. Cell Biol. 110, 1123-1135.
< , B., Bre, M., Griffiths, G., Karsenti, E. (https://doi.org/10.1083/jcb.110.4.1123>
7. 2004) Molecular basis of proton blockage in aquaporins. Structure 12, 65-74.
< , N., Tajkhorshid, E., Roux, B., Pomes, R. (https://doi.org/10.1016/j.str.2003.11.017>
8. 1993)V2-like vasopressin receptor mobilizes intracellular Ca2+ in rat medullary collecting tubules. Am. J. Physiol. Renal Physiol. 265, F35-45.
< , A., Siga, E., Vassent, G., Imbert-Teboul, M. (https://doi.org/10.1152/ajprenal.1993.265.1.F35>
9. 1998) Phosphoinositide signaling in rat inner medullary collecting duct. Am. J. Physiol. Renal Physiol. 274, F564-572.
< , C.-L., Rapko, S. I., Knepper, M. A. (https://doi.org/10.1152/ajprenal.1998.274.3.F564>
10. 2000) Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of ryanodine-sensitive Ca2+ stores and calmodulin. J. Biol. Chem. 275, 36839-36846.
< , C.-L., Yip, K.-P., Michea, L., Kador, K., Ferraris, J. D., Wade, J. B., Knepper, M. A. (https://doi.org/10.1074/jbc.M005552200>
11. 2004) Non-muscle myosin II and myosin light chain kinase are downstream targets for vasopressin signaling in the renal collecting duct. J. Biol. Chem. 279, 49026-49035.
< , C.-L., Christensen, B. M., Frische, S., Vorum, H., Desai, R. A., Hoffert, J. D., de Lanerolle, P., Nielsen, S., Knepper, M. A. (https://doi.org/10.1074/jbc.M408565200>
12. 2000) Localization and regulation of PKA-phosphorylated AQP2 in response to V2-receptor agonist/antagonist treatment. Am. J. Physiol. Renal Physiol. 278, F29-42.
< , B. M., Zelenina, M., Aperia, A., Nielsen, S. (https://doi.org/10.1152/ajprenal.2000.278.1.F29>
13. 2001) A refined structure of human aquaporin-1. FEBS Lett. 504, 206-211.
< , B. L., Engel, A., Grubmuller, H. (https://doi.org/10.1016/S0014-5793(01)02743-0>
14. 2003) The mechanism of proton exclusion in the aquaporin-1 water channel. J. Mol. Biol. 333, 279-293.
< , B. L., Frigato, T., Helms, V., Grubmuller, H. (https://doi.org/10.1016/j.jmb.2003.08.003>
15. 1988) Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263, 15634-15642.
< , B., Smith, B., Kuhajda, F., Agre, P. (https://doi.org/10.1016/S0021-9258(19)37635-5>
16. 1998) cAMPinduced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKα. J. Biol. Chem. 273, 22554-22562.
< , J.-M., Leung, T., Manser, E., Lim, L. (https://doi.org/10.1074/jbc.273.35.22554>
17. 2005) RhoGDIs revisited: novel roles in Rho regulation. Traffic 6, 957-966.
< , E., Olofsson, B., Cherfils, J. (https://doi.org/10.1111/j.1600-0854.2005.00335.x>
18. 2002) Structure and function of water channels. Curr. Opin. Struct. Biol. 12, 509-515.
< , Y., Mitsuoka, K., de Groot, B. L., Philippsen, A., Grubmuller, H., Agre, P., Engel, A. (https://doi.org/10.1016/S0959-440X(02)00355-X>
19. 1997) Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J. Biol. Chem. 272, 14800-14804.
< , K., Sasaki, S., Marumo, F. (https://doi.org/10.1074/jbc.272.23.14800>
20. 1997) cAMPdependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19, 185-196.
< , T., Yatani, A., Dell’Acqua, M. L., Sako, H., Green, S. A., Dascal, N., Scott, J. D., Hosey, M. M. (https://doi.org/10.1016/S0896-6273(00)80358-X>
21. 1995) Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol. Biol. Cell 6, 1061-1075.
< , R., Bretscher, A. (https://doi.org/10.1091/mbc.6.8.1061>
22. 2000) Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J. Cell Biol. 150, 193-204.
< , A., Louvard, D., Arpin, M. (https://doi.org/10.1083/jcb.150.1.193>
23. 2006) Is there a cardiovascular rationale for the use of combined vasopressin V1a/V2 receptor antagonists? Am. J. Med. 119, S93-S96.
< , S. R. (https://doi.org/10.1016/j.amjmed.2006.05.015>
24. 2006) Aquaporin-11: a channel protein lacking apparent transport function expressed in brain. BMC Biochem. 7, 14.
< , D. A., Praetorius, J., Tsunenari, T., Nielsen, S., Agre, P. (https://doi.org/10.1186/1471-2091-7-14>
25. 2002) Functional involvement of VAMP/synaptobrevin-2 in cAMP-stimulated aquaporin 2 translocation in renal collecting duct cells. J. Cell Sci. 115, 3667-3674.
< , S., Laera, A., Calamita, G., Carmosino, M., Procino, G., Rossetto, O., Mannucci, R., Rosenthal, W., Svelto, M., Valenti, G. (https://doi.org/10.1242/jcs.00053>
26. 2005) Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J. Biol. Chem. 280, 15493-15496.
< , M., Sohara, E., Rai, T., Ikawa, M., Okabe, M., Sasaki, S., Uchida, S., Verkman, A.S. (https://doi.org/10.1074/jbc.C500028200>
27. 2002) Long term regulation of aquaporin-2 expression in vasopressin-responsive renal collecting duct principal cells. J. Biol. Chem. 277, 10379-10386.
< , U., Mordasini, D., Bens, M., Bianchi, M., Cluzeaud, F., Rousselot, M.,. Vandewalle, A, Feraille, E., Martin, P.Y. (https://doi.org/10.1074/jbc.M111880200>
28. 2006) Aquaporin gating. Curr. Opin. Struct. Biol. Memb. Eng. Des. 16, 447-456.
< , K., Tornroth-Horsefield, S., Nyblom, M., Johanson, U., Kjellbom, P., Neutze, R. (https://doi.org/10.1016/j.sbi.2006.06.009>
29. 2004) Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressininduced aquaporin-2 shuttle in renal principal cells. J. Biol. Chem. 279, 26654-26665.
< , V., Edemir, B., Stefan, E., Wiesner, B., Lorenz, D., Theilig, F., Schmitt, R., Vossebein, L., Tamma, G., Beyermann, M., Krause, E., Herberg, F. W., Valenti, G., Bachmann, S., Rosenthal, W., Klussmann, E. (https://doi.org/10.1074/jbc.M312835200>
30. 1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225-236.
< , T. (https://doi.org/10.1016/0092-8674(95)90405-0>
31. 1998) SNAP-23 in rat kidney: colocalization with aquaporin-2 in collecting duct vesicles. Am. J. Physiol. Renal Physiol. 275, F752-760.
< , T., Nielsen, S., Mandon, B., Terris, J., Kishore, B. K., M. A. Knepper, M. A., (https://doi.org/10.1152/ajprenal.1998.275.5.F752>
32. 2006) Aquaporin subfamily with unusual NPA boxes. Biochim. Biophys. Acta 1758, 989-993.
< , K. (https://doi.org/10.1016/j.bbamem.2006.02.024>
33. 1994) Voltagedependent potentiation of L-type Ca2+ channels in skeletal muscle cells requires anchored cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 91, 11492-11496.
< , B. D., Scheuer, T., Catterall, W. A. (https://doi.org/10.1073/pnas.91.24.11492>
34. 1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J. Biol. Chem. 269, 14648-14654.
< , J., Preston, G., Smith, B., Guggino, W., Agre, P. (https://doi.org/10.1016/S0021-9258(17)36674-7>
35. 2000) The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J. Cell Biol. 151, 919-930.
< , E. J., Heijnen, I., van Os, C. H., Deen, P. M. T. (https://doi.org/10.1083/jcb.151.4.919>
36. 2004) Identification of vasopressin-induced genes in AQP2-transfected MDCK cells by suppression subtractive hybridization. Biochem. Biophys. Res. Commun. 324, 1234-1241.
< , D.-Y., Park, J.-I., Cho, W.-S., Jeong, M.-H., Cho, G.W., Park, H.-T., Bae, H.-R. (https://doi.org/10.1016/j.bbrc.2004.09.185>
37. 2004) From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol. 5, 687-698.
< , L. S., Kozono, D., Agre, P. (https://doi.org/10.1038/nrm1469>
38. 2001) Genomic structure and insulinmediated repression of the aquaporin adipose (AQPap), adipose-specific glycerol channel. J. Biol. Chem. 276, 36251-36260.
< , K., Shimomura, I., Kondo, H., Kuriyama, H., Makino, Y., Nishizawa, H., Maeda, N., Matsuda, M., Ouchi, N., Kihara, S., Kurachi, Y., Funahashi, T., Matsuzawa, Y. (https://doi.org/10.1074/jbc.M106040200>
39. 2001) An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J. Biol. Chem. 276, 20451-20457.
< , E., Tamma, G., Lorenz, D.,. Wiesner, B., Maric, K., Hofmann, F., Aktories, K., Valenti, G., Rosenthal, W. (https://doi.org/10.1074/jbc.M010270200>
40. 2001) Dynamic mechanisms of the membrane water channel aquaporin-1 (AQP1). Proc. Natl. Acad. Sci. USA 98, 14345-14349.
< , Y., Ma J. (https://doi.org/10.1073/pnas.251507998>
41. 2002) Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J. Clin. Invest. 109, 1395-1399.
< , D., Yasui, M., King, L. S., Agre, P. (https://doi.org/10.1172/JCI0215851>
42. 1996) Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J. 15, 510-519.
< , P., Gesbert, F., Delespine-Carmagnat, M., Stancou, R., Pouchelet, M., Bertoglio, J. (https://doi.org/10.1002/j.1460-2075.1996.tb00383.x>
43. 2002) Two novel aquaporin-2 mutations responsible for congenital nephrogenic diabetes insipidus in Chinese families. J. Clin. Endocrinol. Metab. 87, 2694-2700.
< , S.-H., D. Bichet, G., Sasaki, S., Kuwahara, M., Arthus, M.F., Lonergan, M., Lin, Y.F. (https://doi.org/10.1210/jcem.87.6.8617>
44. 2000) Reorientation of aquaporin-1 topology during maturation in the endoplasmic reticulum. Mol. Biol. Cell 11, 2973-2985.
< , Y., Turnbull, I. R, Bragin, A., Carveth, K., Verkman, A. S., Skach, W. R. (https://doi.org/10.1091/mbc.11.9.2973>
45. 1996) Syntaxin-4 is localized to the apical plasma membrane of rat renal collecting duct cells: possible role in aquaporin-2 trafficking. J. Clin. Invest. 98, 906-913.
< , B., Chou, C.-L., Nielsen, S., Knepper, M. A. (https://doi.org/10.1172/JCI118873>
46. 1998) Dynein and dynactin colocalize with AQP2 water channels in intracellular vesicles from kidney collecting duct. Am. J. Physiol. Renal Physiol. 274, F384-394.
< , D., Schroer, T. A., Ahrens, N., Taylor, A., Knepper, M. A., Nielsen, S. (https://doi.org/10.1152/ajprenal.1998.274.2.F384>
47. 1999) Long-term regulation of aquaporins in the kidney. Am. J. Physiol. Renal Physiol. 276, F331-339.
< , D., Frokiaer, J., Nielsen, S. (https://doi.org/10.1152/ajprenal.1999.276.3.F331>
48. 2004) Microtubule organization and function in epithelial cells. Traffic 5, 1-9.
< , A. (https://doi.org/10.1111/j.1600-0854.2003.00149.x>
49. 1995) Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels. J. Clin. Invest. 96, 1834-1844.
< , S., Marples, D., Birn, H., Mohtashami, M., Dalby, N. O., Trimble, M., Knepper, M. (https://doi.org/10.1172/JCI118229>
50. 2005) Trafficking mechanism of water channel aquaporin-2. Biol. Cell 97, 885-892.
< , Y., Sasaki, S. (https://doi.org/10.1042/BC20040120>
51. 2000) Functional characterization of the molecular defects causing nephrogenic diabetes insipidus in eight families. J. Clin. Endocrinol. Metab. 85, 1703-1710.
, K., Schulz, A., Timmermann, K., Linnemann, K., Hoeltzenbein, M., Jaaskelainen, J., Gruters, A., Filler, G., Schoneberg, T. (
52. 1999) Transport-vesicle targeting: tethers before SNAREs. Nat. Cell. Biol. 1, E17-22.
< , S. R. (https://doi.org/10.1038/8967>
53. 1996) Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. Biophys. J. 71, 19-39.
< , R., Roux, B. (https://doi.org/10.1016/S0006-3495(96)79211-1>
54. 1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl. Acad. Sci. USA 88, 11110-11114.
< , G., Agre, P. (https://doi.org/10.1073/pnas.88.24.11110>
55. 2001) Visualization of a water-selective pore by electron crystallography in vitreous ice. Proc. Natl. Acad. Sci. USA 98, 1398-1403.
< , G., Reddy, V. S., Cheng, A., Melnyk, P., Mitra, A. K. (https://doi.org/10.1073/pnas.98.4.1398>
56. 1994) Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers. J. Biol. Chem. 269, 10417-10422.
< , L., Skach, W., Verkman, A. (https://doi.org/10.1016/S0021-9258(17)34076-0>
57. 1993) Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am. J. Physiol. Cell Physiol. 265, C757-762.
< , H., Gao, Y., Franki, N., Hays, R. M. (https://doi.org/10.1152/ajpcell.1993.265.3.C757>
58. 2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296, 525-530.
< , E., Nollert, P., Jensen, M. O., Miercke, L. J., O’Connell, J., Stroud, R.M., Schulten, K. (https://doi.org/10.1126/science.1067778>
59. 1998) Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J. Clin. Invest. 101, 2257-2267.
< , B. K., A. S. Verkman (https://doi.org/10.1172/JCI2303>
60. 2001) Rho inhibits cAMPinduced translocation of aquaporin-2 into the apical membrane of renal cells. Am. J. Physiol. Renal Physiol. 281, F1092-1101.
< , G., Klussmann, E., Maric, K., Aktories, K., Svelto, M., Rosenthal, W., Valenti, G. (https://doi.org/10.1152/ajprenal.0091.2001>
61. 2005) Actin remodeling requires ERM function to facilitate AQP2 apical targeting. J. Cell Sci. 118, 3623-3630.
< , G., Klussmann, E., Oehlke, J., Krause, E., Rosenthal, W., Svelto, M., Valenti, G. (https://doi.org/10.1242/jcs.02495>
62. 1996) Long-term regulation of four renal aquaporins in rats. Am. J. Physiol. Renal Physiol. 271, F414-422.
< , J., Ecelbarger, C. A., Nielsen, S., Knepper, M. A. (https://doi.org/10.1152/ajprenal.1996.271.2.F414>
63. 1997) ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr. Opin. Cell Biol. 9, 70-75.
< , S., Yonemura, S., Tsukita, S. (https://doi.org/10.1016/S0955-0674(97)80154-8>
64. 2000) The phosphatase inhibitor okadaic acid induces AQP2 translocation independently from AQP2 phosphorylation in renal collecting duct cells. J. Cell Sci. 113, 1985-1992.
< , G., Procino, G., Carmosino, M., Frigeri, A., Mannucci, R., Nicoletti, I., Svelto, M. (https://doi.org/10.1242/jcs.113.11.1985>
65. 1997) Rho GTPases and signaling networks. Genes Dev. 11, 2295-2322.
< , L., D’Souza-Schorey, C. (https://doi.org/10.1101/gad.11.18.2295>
66. 2002) The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J. Biol. Chem. 277, 41473-41479.
< , B. W. M., Savelkoul, P. J. M., Markovich, D., Hofman, E., Nielsen, S., van der Sluijs, P., Deen, P. M. T. (https://doi.org/10.1074/jbc.M207525200>
67. 2004) Proteomic analysis of long-term vasopressin action in the inner medullary collecting duct of the Brattleboro rat. Am. J. Physiol. Renal Physiol. 286, F216-224.
< , B. W. M., Hoffert, J. D., Chou, C.-L., Knepper, M. A. (https://doi.org/10.1152/ajprenal.00307.2003>
68. 2005) Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18, 247-263.
< , D. E., Ballard, J. D. (https://doi.org/10.1128/CMR.18.2.247-263.2005>
69. 2002) Rhodependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J. Cell Sci. 115, 2569-2580.
< , S., Matsui, T., Tsukita, S., Tsukita, S. (https://doi.org/10.1242/jcs.115.12.2569>
70. 2005) Phylogeny and evolution of the major intrinsic protein family. Biol. Cell 97, 397-414.
< , R. (https://doi.org/10.1042/BC20040134>
71. 2000) Prostaglandin E2 interaction with AVP: effects on AQP2 phosphorylation and distribution. Am. J. Physiol. Renal Physiol. 278, F388-394.
< , M., Christensen, B. M., Palmer, J., Nairn, A. C., Nielsen, S., Aperia, A. (https://doi.org/10.1152/ajprenal.2000.278.3.F388>