Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2007, 53, 13-22

https://doi.org/10.14712/fb2007053010013

Isolation and Characterization of Human CXCR4-Positive Pancreatic Cells

T. Koblas, K. Zacharovová, Z. Berková, M. Mindlová, P. Girman, E. Dovolilová, L. Karasová, František Saudek

Institute for Clinical and Experimental Medicine, Prague, Czech Republic

Received January 2007
Accepted January 2007

References

1. Bonner-Weir. S., Taneja, M., Weir, G. C., Tatarkiewicz, K., Song, K. H., Sharma A., O’Neil, J. J. (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA 97, 7999-8004. <https://doi.org/10.1073/pnas.97.14.7999>
2. Cauffman, G., Liebaers, I., Van Steirteghem, A., Van de Velde, H. (2006) POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells 24, 2685-2691. <https://doi.org/10.1634/stemcells.2005-0611>
3. Dor, Y., Brown, J., Martinez, O. I., Melton, D. A. (2004) Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41-46. <https://doi.org/10.1038/nature02520>
4. Eberhardt, M., Salmon, P., von Mach, M. A., Hengstler, J. G., Brulport, M., Linscheid, P., Seboek, D., Oberholzer, J., Barbero, A., Martin, I., Muller, B., Trono, D., Zulewski, H. (2006) Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem. Biophys. Res. Commun. 345, 1167-1176. <https://doi.org/10.1016/j.bbrc.2006.05.016>
5. Edlund, H. (2002) Pancreatic organogenesis – developmental mechanisms and implications for therapy. Nat. Rev. Genet. 3, 524-532. <https://doi.org/10.1038/nrg841>
6. Fujikawa, T., Oh, S. H., Pi, L., Hatch, H. M., Shupe, T., Petersen, B. E. (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cellderived insulin-producing cells. Am. J. Pathol. 166, 1781-1791. <https://doi.org/10.1016/S0002-9440(10)62488-1>
7. Gao, R., Ustinov, J., Pulkkinen, M. A., Lundin, K., Korsgren, O., Otonkoski, T. (2003) Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes 52, 2007-2015. <https://doi.org/10.2337/diabetes.52.8.2007>
8. Gu, G., Dubauskaite, J., Melton, D. A. (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447-2457. <https://doi.org/10.1242/dev.129.10.2447>
9. Hansson, M., Tonning, A., Frandsen, U., Petri, A., Rajagopal, J., Englund, M. C., Heller, R. S., Hakansson, J., Fleckner, J., Skold, H. N., Melton, D., Semb, H., Serup, P. (2004) Artifactual insulin release from differentiated embryonic stem cells. Diabetes 53, 2603-2609. <https://doi.org/10.2337/diabetes.53.10.2603>
10. Kayali, A. G., Van Gunst, K., Campbell, I. L., Stotland, A., Kritzik, M., Liu, G., Flodstrom-Tullberg, M., Zhang, Y. Q., Sarvetnick, N. (2003) The stromal cell-derived factor1α/CXCR4 ligand-receptor axis is critical for progenitor survival and migration in the pancreas. J. Cell Biol. 163, 859-869. <https://doi.org/10.1083/jcb.200304153>
11. Kodama, S., Toyonaga, T., Kondo, T., Matsumoto, K., Tsuruzoe, K., Kawashima, J., Goto, H., Kume, K., Kume, S., Sakakida, M., Araki, E. (2005) Enhanced expression of PDX-1 and Ngn3 by exendin-4 during β cell regeneration in STZ-treated mice. Biochem. Biophys. Res. Commun. 327, 1170-1178. <https://doi.org/10.1016/j.bbrc.2004.12.120>
12. Kucia, M., Ratajczak, J., Reca, R., Janowska-Wieczorek, A., Ratajczak, M. Z. (2004) Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol. Dis. 32, 52-57. <https://doi.org/10.1016/j.bcmd.2003.09.025>
13. Lechner, A., Nolan, A. L., Blacken, R. A., Habener, J. F. (2005) Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue. Biochem. Biophys. Res. Commun. 327, 581-588. <https://doi.org/10.1016/j.bbrc.2004.12.043>
14. Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., McKay, R. (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389-1394. <https://doi.org/10.1126/science.1058866>
15. Murtaugh, L. C., Melton, D. A. (2003) Genes, signals, and lineages in pancreas development. Annu. Rev. Cell. Dev. Biol. 19, 71-89. <https://doi.org/10.1146/annurev.cellbio.19.111301.144752>
16. Pictet, R. L., Clark, W. R., Williams, R. H., Rutter, W. J. (1972) An ultrastructural analysis of the developing embryonic pancreas. Dev. Biol. 29, 436-467. <https://doi.org/10.1016/0012-1606(72)90083-8>
17. Ramiya, V. K., Maraist, M., Arfors, K. E., Schatz, D. A., Peck, A. B., Cornelius, J. G. (2000) Reversal of insulindependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med. 6, 278-282. <https://doi.org/10.1038/73128>
18. Rajagopal, J., Anderson, W. J., Kume, S., Martinez, O. I., Melton, D. A. (2003) Insulin staining of ES cell progeny from insulin uptake. Science 299, 363. <https://doi.org/10.1126/science.1077838>
19. Robertson, R. P., Davis, C., Larsen, J., Stratta, R., Sutherland, D. E., American Diabetes Association. (2006) Pancreas and islet transplantation in type 1 diabetes. Diabetes Care 29, 935.
20. Schwitzgebel, V. M., Scheel, D. W., Conners, J. R., Kalamaras, J., Lee, J. E., Anderson, D. J., Sussel, L., Johnson, J. D., German, M. S. (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127, 3533-3542. <https://doi.org/10.1242/dev.127.16.3533>
21. Shapiro, A. M., Lakey, J. R., Ryan, E. A., Korbutt, G. S., Toth, E., Warnock, G. L., Kneteman, N. M., Rajotte, R. V. (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230-238. <https://doi.org/10.1056/NEJM200007273430401>
22. Selander, L., Edlund, H. (2002) Nestin is expressed in mesenchymal and not epithelial cells of the developing mouse pancreas. Mech. Dev. 113, 189-192. <https://doi.org/10.1016/S0925-4773(02)00023-0>
23. Soria, B., Roche, E., Berna, G., Leon-Quinto, T., Reig, J. A., Martin F. (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49, 157-162. <https://doi.org/10.2337/diabetes.49.2.157>
24. Suzuki, A., Nakauchi, H., Taniguchi, H. (2004) Prospective isolation of multipotent pancreatic progenitors using flowcytometric cell sorting. Diabetes 53, 2143-2152. <https://doi.org/10.2337/diabetes.53.8.2143>
25. Treutelaar, M. K., Skidmore, J. M., Dias-Leme, C. L., Hara, M., Zhang, L., Simeone, D., Martin, D. M., Burant, C. F. (2003) Nestin-lineage cells contribute to the microvasculature but not endocrine cells of the islet. Diabetes 52, 2503-2512. <https://doi.org/10.2337/diabetes.52.10.2503>
26. Yu, Y., Flint, A., Dvorin, E. L., Bischoff, J. (2002) AC133-2, a novel isoform of human AC133 stem cell antigen. J. Biol. Chem. 277, 20711-20716. <https://doi.org/10.1074/jbc.M202349200>
27. Wang, G. S., Rosenberg, L., Scott, F. W. (2005) Tubular complexes as a source for islet neogenesis in the pancreas of diabetes-prone BB rats. Lab. Invest. 85, 675-688. <https://doi.org/10.1038/labinvest.3700259>
28. Wang, R., Li, J., Yashpal, N. (2004) Phenotypic analysis of cKit expression in epithelial monolayers derived from postnatal rat pancreatic islets. J. Endocrinol. 182, 113-122. <https://doi.org/10.1677/joe.0.1820113>
29. Wang, R., Li, J., Yashpal, N., Gao, N. (2005) Nestin expression and clonal analysis of islet-derived epithelial monolayers: insight into nestin-expressing cell heterogeneity and differentiation potential. J. Endocrinol. 184, 329-339. <https://doi.org/10.1677/joe.1.05916>
30. Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J., Lagutina, I., Grosveld, G. C., Osawa, M., Nakauchi, H., Sorrentino, B. P. (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 7, 1028-1034. <https://doi.org/10.1038/nm0901-1028>
31. Zulewski, H., Abraham, E. J., Gerlach, M. J., Daniel, P. B., Moritz, W., Muller, B., Vallejo, M., Thomas, M. K., Habener, J. F. (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521-533. <https://doi.org/10.2337/diabetes.50.3.521>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive