Fol. Biol. 2007, 53, 37-49
https://doi.org/10.14712/fb2007053020037
Valproic Acid, a Molecular Lead to Multiple Regulatory Pathways
References
1. 2005) Acute myeloid leukemia: therapeutic impact of epigenetic drugs. Int. J. Biochem. Cell. Biol. 37, 1752-1762.
< , L., Clarke, N., Nebbioso, A., Scognamiglio, A., Gronemeyer, H. (https://doi.org/10.1016/j.biocel.2005.04.019>
2. 2006) Valproic acid induces apoptosis in prostate carcinoma cell lines by activation of multiple death pathways. Anticancer Drugs 17, 1141-1150.
< , A., Valentini, A., Millimaggi, D., Gravina, G. L., Miano, R., Dolo, V., Vicentini, C., Bologna, M., Federici, G., Bernardini, S. (https://doi.org/10.1097/01.cad.0000236302.89843.fc>
3. 2006) Peroxisome proliferator-activated receptor γ regulates E-cadherin expression and inhibits growth and invasion of prostate cancer. Mol. Cell. Biol. 26, 7561-7574.
< , J. S., Iankova, I., Miard, S., Fritz, V., Sarruf, D., Abella, A., Berthe, M. L., Noel, D., Pillon, A., Iborra, F., Dubus, P., Maudelonde, T., Culine, S., Fajas, L. (https://doi.org/10.1128/MCB.00605-06>
4. 2005a) Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 65, 6321-6329.
< , S., Bitzer, M., Lauer, U. M., Venturelli, S., Pathil, A., Krusch, M., Kaiser, S., Jobst, J., Smirnow, I., Wagner, A., Steinle, A., Salih, H. R. (https://doi.org/10.1158/0008-5472.CAN-04-4252>
5. 2005b) Apoptosis on hepatoma cells but not on primary hepatocytes by histone deacetylase inhibitors valproate and ITF2357. J. Hepatol. 42, 210-217.
< , S., Pathil, A., Venturelli, S., Mascagni, P., Weiss, T. S., Gottlicher, M., Gregor, M., Lauer, U. M., Bitzer, M. (https://doi.org/10.1016/j.jhep.2004.10.020>
6. 1998) Differential effects of mood stabilizers on Fos/Jun proteins and AP-1 DNA binding activity in human neuroblastoma SH-SY5Y cells. Brain. Res. Mol. Brain Res. 58, 95-102.
< , V., Wang, J. F., Reiach, J. S., Young, L. T. (https://doi.org/10.1016/S0169-328X(98)00107-7>
7. 1991) Study of bioequivalence of magnesium and sodium valproates. J. Pharm. Biomed. Anal. 9, 317-321.
< , A., Sottofattori, E., Mazzei, M., Sannita, W. G. (https://doi.org/10.1016/0731-7085(91)80200-S>
8. 2005) β-Catenin: a pivot between cell adhesion and Wnt signalling. Curr. Biol. 15, R64-67.
< , M. (https://doi.org/10.1016/j.cub.2004.12.058>
9. 2000) Linking colorectal cancer to Wnt signaling. Cell 103, 311-320.
< , M., Clevers, H. (https://doi.org/10.1016/S0092-8674(00)00122-7>
10. 1991) Studies on the β-oxidation of valproic acid in rat liver mitochondrial preparations. Drug Metab. Dispos. 19, 823-829.
, S. M., Baillie, T. A. (
11. 2002) Anti-tumor mechanisms of valproate: a novel role for an old drug. Med. Res. Rev. 22, 492-511.
< , R. A., Cinatl, J., Jr. (https://doi.org/10.1002/med.10017>
12. 2002) Valproate and valproate-analogues: potent tools to fight against cancer. Curr. Med. Chem. 9, 1417-1433.
< , R. A., Nau, H., Michaelis, M., Cinatl, J., Jr. (https://doi.org/10.2174/0929867023369763>
13. 2005) Evolving anticancer drug valproic acid: insights into the mechanism and clinical studies. Med. Res. Rev. 25, 383-397.
< , R. A., Michaelis, M., Driever, P. H., Cinatl, J., Jr. (https://doi.org/10.1002/med.20027>
14. 1998) Studies on the teratogen pharmacophore of valproic acid analogues: evidence of interactions at a hydrophobic centre. Eur. J. Pharmacol. 354, 289-299.
< , U., Ehlers, K., Ellerbeck, U., Bacon, C. L., O’Driscoll, E., O’Connell, C., Berezin, V., Kawa, A., Lepekhin, E., Bock, E., Regan, C. M., Nau, H. (https://doi.org/10.1016/S0014-2999(98)00462-2>
15. 2005) Valproate in bipolar disorder: 2000 onwards. Acta Psychiatr. Scand. 111, 13-20.
< , C. L., Singh, V. (https://doi.org/10.1111/j.1600-0447.2005.00522.x>
16. 1997) A PMLRARα transgene initiates murine acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 94, 2551-2556.
< , D., Kogan, S., Lagasse, E., Weissman, I., Alcalay, M., Pelicci, P. G., Atwater, S., Bishop, J. M. (https://doi.org/10.1073/pnas.94.6.2551>
17. 2006) Protein lysine acetylation in normal and leukaemic haematopoiesis: HDACs as possible therapeutic targets in adult AML. Expert. Opin. Ther. Targets 10, 51-68.
< , O., Stapnes, C., Tronstad, K. J., Ryningen, A., Anensen, N., Gjertsen, B. T. (https://doi.org/10.1517/14728222.10.1.51>
18. 2004) Deactylase inhibitors disrupt cellular complexes containing protein phosphatases and deacetylases. J. Biol. Chem. 279, 7685-7691.
< , M. H., Guardiola, A., Connor, J. H., Yao, T. P., Shenolikar, S. (https://doi.org/10.1074/jbc.M310997200>
19. 2005) Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer 104, 2717-2725.
< , G., Ritter, M., Wassmann, B., Schoch, C., Heinzel, T., Schwarz, K., Romanski, A., Kramer, O. H., Kampfmann, M., Hoelzer, D., Neubauer, A., Ruthardt, M., Ottmann, O. G. (https://doi.org/10.1002/cncr.21589>
20. 1882) On the propyl derivatives and decomposition products of ethylacetoacetate. Am. Chem. J. 3, 385-395.
, B. S. (
21. 2005) Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells. J. Clin. Endocrinol. Metab. 90, 1383-1389.
< , M. G., Fortunati, N., Pugliese, M., Costantino, L., Poli, R., Bosco, O., Boccuzzi, G. (https://doi.org/10.1210/jc.2004-1355>
22. 2002) Enhanced growth inhibition by combination differentiation therapy with ligands of peroxisome proliferator-activated receptor-γ and inhibitors of histone deacetylase in adenocarcinoma of the lung. Clin. Cancer Res. 8, 1206-1212.
, T. H., Szabo, E. (
23. 2005) Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J. Biol. Chem. 280, 38879-38887.
< , C. S., Weng, S. C., Tseng, P. H, Lin, H. P. (https://doi.org/10.1074/jbc.M505733200>
24. 1997) Increase in AP-1 transcription factor DNA binding activity by valproic acid. Neuropsychopharmacology 16, 238-245.
, G., Yuan, P., Hawver, D. B., Potter, W. Z., Manji, H. K. (
25. 1999a) The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J. Neurochem. 72, 1327-1330.
< , G., Huang, L. D., Jiang, Y. M., Manji, H. K. (https://doi.org/10.1046/j.1471-4159.2000.0721327.x>
26. 1999b) Valproate robustly enhances AP-1 mediated gene expression. Brain Res. Mol. Brain Res. 64, 52-58.
< , G., Yuan, P. X., Jiang, Y. M., Huang, L. D., Manji, H. K. (https://doi.org/10.1016/S0169-328X(98)00303-9>
27. 2006) Altered gene expression in mice treated with the mood stabilizer sodium valproate. Int. J. Neuropsychopharmacol. 9, 267-276.
< , A., Adams, L. J., Mitchell, P. B., Schofield, P. R. (https://doi.org/10.1017/S1461145705005717>
28. 2000) Molecular control of neural crest formation, migration and differentiation. Curr. Opin. Cell Biol. 12, 719-724.
< , J. H., Coles, E. G., Wilkinson, D. G. (https://doi.org/10.1016/S0955-0674(00)00158-7>
29. 1996) Antitumor activity of sodium valproate in cultures of human neuroblastoma cells. Anticancer Drugs 7, 766-773.
< , J., Jr., Cinatl, J., Scholz, M., Driever, P. H., Henrich, D., Kabickova, H., Vogel, J. U., Doerr, H. W., Kornhuber, B. (https://doi.org/10.1097/00001813-199609000-00008>
30. 1997) Sodium valproate inhibits in vivo growth of human neuroblastoma cells. Anticancer Drugs 8, 958-963.
< , J., Jr., Cinatl, J., Driever, P. H., Kotchetkov, R., Pouckova, P., Kornhuber, B., Schwabe, D. (https://doi.org/10.1097/00001813-199711000-00007>
31. 2002) Induction of differentiation and suppression of malignant phenotype of human neuroblastoma BE(2)-C cells by valproic acid: enhancement by combination with interferon-α. Int. J. Oncol. 20, 97-106.
, J., Jr., Kotchetkov, R., Blaheta, R., Driever, P. H., Vogel, J. U., Cinatl, J. (
32. 2004) Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL. EMBO J. 23, 3051-3060.
< , N., Jimenez-Lara, A. M., Voltz, E., Gronemeyer, H. (https://doi.org/10.1038/sj.emboj.7600302>
33. 2003) Valproyl-CoA and esterified valproic acid are not found in brains of rats treated with valproic acid, but the brain concentrations of CoA and acetyl-CoA are altered. Neurochem. Res. 28, 861-866.
< , J., Rapoport, S. I., Rosenberger, T. A. (https://doi.org/10.1023/A:1023267224819>
34. 2005) DNA methylation disturbances as novel therapeutic target in lung cancer: preclinical and clinical results. Crit. Rev. Oncol. Hematol. 55, 1-11.
< , W., Lubbert, M. (https://doi.org/10.1016/j.critrevonc.2005.02.002>
35. 1992) The valproic acid metabolite E-2-n-propyl-2-pentenoic acid does not induce spina bifida in the mouse. Dev. Pharmacol. Ther. 19, 196-204.
< , K., Sturje, H., Merker, H. J., Nau, H. (https://doi.org/10.1159/000457485>
36. 2005) Effects of valproic acid derivatives on inositol trisphosphate depletion, teratogenicity, glycogen synthase kinase-3β inhibition, and viral replication: a screening approach for new bipolar disorder drugs derived from the valproic acid core structure. Mol. Pharmacol. 67, 1426-1433.
< , B. J., Towers, G. J., Ryves, W. J., Eikel, D., Adley, K., Ylinen, L. M., Chadborn, N. H., Harwood, A. J., Nau, H., Williams, R. S. (https://doi.org/10.1124/mol.104.009308>
37. 2004) Valproic acid induces expression of neutrophil chemoattractants of the CXC chemokine family in endothelial cells. Int. J. Clin. Pharmacol. Ther. 42, 568-574.
< , T., Natsheh, I., Muller, I., Beecken, W. D., Jonas, D., Blaheta, R. A. (https://doi.org/10.5414/CPP42568>
38. 2006) Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex. Psychopharmacology (Berl.) 185, 255-262.
< , G., Janiri, L. (https://doi.org/10.1007/s00213-006-0317-3>
39. 2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20, 6969-6978.
< , M., Minucci, S., Zhu, P., Kramer, O. H., Schimpf, A., Giavara, S., Sleeman, J. P., Lo Coco, F., Nervi, C., Pelicci, P. G., Heinzel, T. (https://doi.org/10.1093/emboj/20.24.6969>
40. 1997) Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR α under control of cathepsin G regulatory sequences. Blood 89, 376-387.
< , J. L., Wesselschmidt, R. L., Pelicci, P. G., Ley, T. J. (https://doi.org/10.1182/blood.V89.2.376>
41. 2000) Contribution of receptor/G protein signaling to cell growth and transformation. Naunyn Schmiedebergs Arch. Pharmacol. 361, 345-362.
< , T., Grosse, R., Schultz, G. (https://doi.org/10.1007/s002109900208>
42. Guel, H., Wassmann, B., Romanski, A., Hoelzer, D., Ruthardt, M., Ottmann, O. G., Bug, G. (2003) Effect of the histone deacetylase inhibitor valproic acid in combination with all-trans retinoic acid on malignant hematopoiesis. Blood 102.
43. 2004) Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 64, 1079-1086.
< , N., Tsygankova, O. M., Meinkoth, J. L., Klein, P.S. (https://doi.org/10.1158/0008-5472.CAN-03-0799>
44. 2005) Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. FASEB J. 19, 1166-1168.
< , N., Berman, M. G., Wittner, B. S., Gentleman, R. C., Klein, P. S., Green, J. B. (https://doi.org/10.1096/fj.04-3425fje>
45. 2001) Mechanisms of transcriptional repression by the t(8; 21)-, t(12; 21)-, and inv(16)-encoded fusion proteins. Cancer Chemother. Pharmacol. 48, S31-34.
< , S. W., Lutterbach, B., Durst, K., Wang, L., Linggi, B., Wu, S., Wood, L., Amann, J., King, D., Hou, Y. (https://doi.org/10.1007/s002800100302>
46. 2000) First non-radioactive assay for in vitro screening of histone deacetylase inhibitors. Pharmazie 55, 601-606.
, K., Brosch, G., Loidl, P., Jung, M. (
47. 2004) Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. EMBO J. 23, 1144-1154.
< , A., Monestiroli, S., Ronzoni, S., Carbone, R., Pearson, M., Pruneri, G., Viale, G., Appella, E., Pelicci, P., Minucci, S. (https://doi.org/10.1038/sj.emboj.7600109>
48. 2005) Leukemia-associated fusion proteins. Multiple mechanisms of action to drive cell transformation. Cell Cycle 4, 67-69.
< , A., Pelicci, P. G., Inucci, S. (https://doi.org/10.4161/cc.4.1.1400>
49. 2000) Mechanisms of action of valproate: a commentatory. Neurochem. Int. 37, 103-110.
< , C. U. (https://doi.org/10.1016/S0197-0186(00)00013-9>
50. 2003) Valproate: past, present, and future. CNS Drug Rev. 9, 199-216.
< , C. U. Johannessen, S. I. (https://doi.org/10.1111/j.1527-3458.2003.tb00249.x>
51. 2006) The effects of the histone deacetylase inhibitor valproic acid on cell cycle, growth suppression and apoptosis in multiple myeloma. Haematologica 91, 248-251.
, M., Zavrski, I., Sterz, J., Jakob, C., Fleissner, C., Kloetzel, P. M., Sezer, O., Heider, U. (
52. 2004) Down-regulation of matrix-invasive potential of human liver cancer cells by type I interferon and a histone deacetylase inhibitor sodium butyrate. Int. J. Oncol. 24, 837-845.
, F., Saito, H., Saito, Y., Wakabayashi, K., Nakamoto, N., Tada, S., Suzuki, H., Tsunematsu, S., Kumagai, N., Ishii, H. (
53. 2002) Valproic acid induces apoptosis in human leukemia cells by stimulating both caspase-dependent and -independent apoptotic signaling pathways. Leuk. Res. 26, 495-502.
< , R., Kawagoe, H., Sano, K. (https://doi.org/10.1016/S0145-2126(01)00151-5>
54. 2006) Valproic acid-induced gene expression through production of reactive oxygen species. Cancer Res. 66, 6563-6569.
< , Y., Arinze, I. J. (https://doi.org/10.1158/0008-5472.CAN-06-0814>
55. 2001) Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int. J. Cancer 93, 445-449.
< , A., Waha, A., Tonn, J. C., Sorensen, N., Berthold, F., Wolter, M., Reifenberger, J., Hartmann, W., Friedl, W., Reifenberger, G., Wiestler, O. D., Pietsch, T. (https://doi.org/10.1002/ijc.1342>
56. 1999) Safe use of valproic acid during pregnancy. Can. Fam. Physician 45, 1451-1453.
, G., Kennedy, D. (
57. 2006) Major malformations with valproic acid. Can. Fam. Physician 52, 441-442, 444, 447.
, G., Nava-Ocampo, A. A., Moretti, M. E., Sussman, R., Nulman, I. (
58. 2001) Histone deacetylase as a therapeutic target. Trends Endocrinol. Metab. 12, 294-300.
< , O. H., Gottlicher, M., Heinzel, T. (https://doi.org/10.1016/S1043-2760(01)00438-6>
59. 2003) The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 22, 3411-3420.
< , O. H., Zhu, P., Ostendorff, H. P., Golebiewski, M., Tiefenbach, J., Peters, M. A., Brill, B., Groner, B., Bach, I., Heinzel, T., Gottlicher, M. (https://doi.org/10.1093/emboj/cdg315>
60. 2006) The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer 106, 112-119.
< , A., Schmid, M., Schlenk, R., Knipp, S., Hildebrandt, B., Steidl, C., Germing, U., Haas, R., Dohner, H., Gattermann, N. (https://doi.org/10.1002/cncr.21552>
61. 1987) Teratogen update: valproic acid. Teratology 35, 465-473.
< , E. J., Sever, L. E., Oakley, G. P., Jr. (https://doi.org/10.1002/tera.1420350319>
62. 2001) Peroxisome proliferator-activated receptor δ is a specific sensor for teratogenic valproic acid derivatives. Eur. J. Pharmacol. 431, 25-33.
< , A., Carlberg, C., Nau, H. (https://doi.org/10.1016/S0014-2999(01)01423-6>
63. 1999) New molecular bioassays for the estimation of the teratogenic potency of valproic acid derivatives in vitro: activation of the peroxisomal proliferator-activated receptor (PPARδ). Toxicol. Appl. Pharmacol. 160, 238-249.
< , A., Siehler, S., Ellerbeck, U., Gottlicher, M., Nau, H. (https://doi.org/10.1006/taap.1999.8770>
64. 2006) Targeting histone deacetylase in cancer therapy. Med. Res. Rev. 26, 397-413.
< , H. Y., Chen, C. S., Lin, S. P., Weng, J. R. (https://doi.org/10.1002/med.20056>
65. 2000) Putative role of neuronal 5-lipoxygenase in an aging brain. FASEB J. 14, 1464-1469.
, H., Uz, T., Sugaya, K., Qu, T. (
66. 1996) Regulation of signal transduction pathways by mood-stabilizing agents: implications for the delayed onset of therapeutic efficacy. J. Clin. Psychiatry 57, 34-47.
, H. K., Chen, G., Hsiao, J. K., Risby, E. D., Masana, M. I., Potter, W. Z. (
67. 1991) The anticonvulsant valproate teratogen restricts the glial cell cycle at a defined point in the mid-G1 phase. Brain Res. 554, 223-228.
< , M. L., Regan, C. M. (https://doi.org/10.1016/0006-8993(91)90193-Y>
68. 2004) Invasion of v-Fos(FBR)-transformed cells is dependent upon histone deacetylase activity and suppression of histone deacetylase regulated genes. Oncogene 23, 5284-5292.
< , L. C., Winnie, J. N., Ozanne, B. W. (https://doi.org/10.1038/sj.onc.1207687>
69. 2002) Histone deacetylases as therapeutic targets in hematologic malignancies. Curr. Opin. Hematol. 9, 322-332.
< , A., Licht, J. D. (https://doi.org/10.1097/00062752-200207000-00010>
70. 1996) Teratogenic effects of sodium valproate in mice and rats at midgestation and at term. Teratog. Carcinog. Mutagen 16, 97-108.
< , E., Broccia, M. L., Nau, H., Prati, M., Ricolfi, R., Giavini, E. (https://doi.org/10.1002/(SICI)1520-6866(1996)16:2<97::AID-TCM4>3.0.CO;2-A>
71. 1998) Stage-dependent skeletal malformations induced by valproic acid in rat. Int. J. Dev. Biol. 42, 99-102.
, E., Broccia, M. L., Prati, M., Giavini, E. (
72. 1963) Pharmacodynamic properties of dipropylacetic acid. 1st memory: anti-epileptic properties. Therapie 18, 435-438. (in French)
, H., Carraz, G., Neunier, Y., Eymard, P., Aimard, M. (
73. 2004a) Valproic acid inhibits angiogenesis in vitro and in vivo. Mol. Pharmacol. 65, 520-527.
< , M., Michaelis, U. R., Fleming, I., Suhan, T., Cinatl, J., Blaheta, R. A., Hoffmann, K., Kotchetkov, R., Busse, R., Nau, H., Cinatl, J. Jr. (https://doi.org/10.1124/mol.65.3.520>
74. 2004b) Valproic acid and interferon-α synergistically inhibit neuroblastoma cell growth in vitro and in vivo. Int. J. Oncol. 25, 1795-1799.
, M., Suhan, T., Cinatl, J., Driever, P. H., Cinatl, J., Jr. (
75. 2001) Genes, chromatin, and breast cancer: an epigenetic tale. J. Mammary Gland Biol. Neoplasia 6, 169-182.
< , L. M., Asch, H. L., Asch, B. B. (https://doi.org/10.1023/A:1011356623442>
76. Miller, J. R. (2002) The Wnts. Genome Biol. 31-15.
77. 1999) Mechanism and function of signal transduction by the Wnt/β-catenin and Wnt/Ca2+ pathways. Oncogene 18, 7860-7872.
< , J. R., Hocking, A. M., Brown, J. D., Moon, R. T. (https://doi.org/10.1038/sj.onc.1203245>
78. 2001) Silencing of Wnt signaling and activation of multiple metabolic pathways in response to thyroid hormone-stimulated cell proliferation. Mol. Cell. Biol. 21, 6626-6639.
< , L. D., Park, K. S., Guo, Q. M., Alkharouf, N. W., Malek, R. L., Lee, N. H., Liu, E. T., Cheng, S. Y. (https://doi.org/10.1128/MCB.21.19.6626-6639.2001>
79. 1999) Retinoid receptors in health and disease: co-regulators and the chromatin connection. Semin. Cell. Dev. Biol. 10, 215-225.
< , S., Pelicci, P. G. (https://doi.org/10.1006/scdb.1999.0303>
80. 2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 6, 38-51.
< , S., Pelicci, P. G. (https://doi.org/10.1038/nrc1779>
81. 2000) Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol. Cell 5, 811-820.
< , S., Maccarana, M., Cioce, M., De Luca, P., Gelmetti, V., Segalla, S., Di Croce, L., Giavara, S., Matteucci, C., Gobbi, A., Bianchini, A., Colombo, E., Schiavoni, I., Badaracco, G., Hu, X., Lazar, M. A., Landsberger, N., Nervi, C., Pelicci, P. G. (https://doi.org/10.1016/S1097-2765(00)80321-4>
82. 1991) Valproic acid-induced neural tube defects in mouse and human: aspects of chirality, alternative drug development, pharmacokinetics and possible mechanisms. Pharmacol. Toxicol. 69, 310-321.
< , H., Hauck, R. S., Ehlers, K. (https://doi.org/10.1111/j.1600-0773.1991.tb01303.x>
83. 2005) Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat. Med. 11, 77-84.
< , A., Clarke, N., Voltz, E., Germain, E., Ambrosino, C., Bontempo, P., Alvarez, R., Schiavone, E. M., Ferrara, F., Bresciani, F., Weisz, A., de Lera, A. R., Gronemeyer, H., Altucci, L. (https://doi.org/10.1038/nm1161>
84. 2005) P450 enzyme inducing and non-enzyme inducing antiepileptics in glioblastoma patients treated with standard chemotherapy. J. Neurooncol. 72, 255-260.
< , S., Piribauer, M., Marosi, C., Lahrmann, H., Hitzenberger, P., Grisold, W. (https://doi.org/10.1007/s11060-004-2338-2>
85. 2003) WNT7a induces E-cadherin in lung cancer cells. Proc. Natl. Acad. Sci. USA 100, 10429-10434.
< , T., Gemmill, R. M., Ferguson, K., Kusy, S., Roche, J., Brambilla, E., Zeng, C., Baron, A., Bemis, L., Erickson, P., Wilder, E., Rustgi, A., Kitajewski, J., Gabrielson, E., Bremnes, R., Franklin, W., Drabkin, H. A. (https://doi.org/10.1073/pnas.1734137100>
86. 2006) Molecular approaches to developmental malformations using analogous forms of valproic acid. Congenit. Anom. (Kyoto), 46, 68-75.
< , A., Fujiwara, M. (https://doi.org/10.1111/j.1741-4520.2006.00105.x>
87. 2004) Polycomb homologs are involved in teratogenicity of valproic acid in mice. Birth Defects Res. A. Clin. Mol. Teratol. 70, 870-879.
< , A., Aoki, Y., Kushima, K., Kurihara, H., Bialer, M., Fujiwara, M. (https://doi.org/10.1002/bdra.20085>
88. 2004) Differential enantioselective effects of pentyl-4-yn-valproate on spatial learning in the rat, and neurite outgrowth and cyclin D3 expression in vitro. J. Neurochem. 88, 370-379.
< , E. D., Gherardini, L. M., Gallagher, H. C., Foley, A. G., Murphy, K. J., Regan, C. M. (https://doi.org/10.1111/j.1471-4159.2004.02158.x>
89. 2003) Pharmacology of valproate. Psychopharmacol. Bull. 37, 17-24.
, M. J., Nemeroff, C. B. (
90. 2001) Tumor suppressor and anti-inflammatory actions of PPARγ agonists are mediated via upregulation of PTEN. Curr. Biol. 11, 764-768.
< , L., Pass, I., Coxon, P., Downes, C. P., Smith, S. A., Macphee, C. (https://doi.org/10.1016/S0960-9822(01)00225-1>
91. 2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36734-36741.
< , C. J., Zhang, F., Huang, E. Y., Guenther, M. G., Lazar, M. A., Klein, P. S. (https://doi.org/10.1074/jbc.M101287200>
92. 2003) Sodium valproate induces apoptosis in the rat hepatoma cell line, FaO. Toxicology 192, 219-227.
< , A., Bullock, T., Plant, N. (https://doi.org/10.1016/S0300-483X(03)00331-7>
93. 2005) Increase in platelet count in older, poor-risk patients with acute myeloid leukemia or myelodysplastic syndrome treated with valproic acid and all-trans retinoic acid. Cancer 104, 101-109.
< , C., Cilloni, D., Messa, E., Morotti, A., Giugliano, E., Pautasso, M., Familiari, U., Cappia, S., Pelicci, P. G., Lo Coco, F., Saglio, G., Guerrasio, A. (https://doi.org/10.1002/cncr.21132>
94. 2000) Inflammatory 5-LOX mRNA and protein are increased in brain of aging rats. Neurobiol. Aging 21, 647-652.
< , T., Uz, T., Manev, H. (https://doi.org/10.1016/S0197-4580(00)00167-6>
95. 2005) Valproic acid and all-trans retinoic acid for the treatment of elderly patients with acute myeloid leukemia. Haematologica 90, 986-988.
, E., Chaibi, P., Dombret, H., Degos, L. (
96. 1985) Therapeutic levels of sodium valproate inhibit mitotic indices in cells of neural origin. Brain Res. 347, 394-398.
< , C. M. (https://doi.org/10.1016/0006-8993(85)90207-0>
97. 2006) Effect of valproic acid and antiapoptotic cytokines on differentiation and apoptosis induction of human leukemia cells. Gen. Physiol. Biophys. 25, 65-79.
, M., Vavrova, J., Vokurkova, D., Zaskodova, D. (
98. 2005) p21Waf1/Cip1 is a common target induced by short-chain fatty acid HDAC inhibitors (valproic acid, tributyrin and sodium butyrate) in neuroblastoma cells. Oncol. Rep. 13, 1139-1144.
, P., Tonelli, R., Camerin, C., Purgato, S., Fronza, R., Bianucci, F., Guerra, F., Pession, A., Ferreri, A. M. (
99. 1988) Effects of anticonvulsants on cholinergic and GABAergic properties in the neuronal cell clone NG108-15. Neurochem. Res. 13, 1007-1013.
< , C. D., Slesinger, P. A., Singer, H. S. (https://doi.org/10.1007/BF00970776>
100. 2005) Valproic acid inhibits growth, induces apoptosis, and modulates apoptosis-regulatory and differentiation gene expression in human thyroid cancer cells. Surgery 138, 979-984.
< , W. T., Wong, T. S., Chung, W. Y., Wong, M. G., Kebebew, E., Duh, Q. Y., Clark, O. H. (https://doi.org/10.1016/j.surg.2005.09.019>
101. 1998) Valproic acid, but not its non-teratogenic analogue 2-isopropylpentanoic acid, affects proliferation, viability and neuronal differentiation of the human teratocarcinoma cell line NTera-2. Neurotoxicology 19, 357-370.
, G., Berezin, V., Bock, E. (
102. 1987) Effects of anticonvulsants on cell growth and enzymatic and receptor binding activity in a neuroblastoma x glioma hybrid cell culture. Epilepsia 28, 214-221.
< , P. A., Singer, H. S. (https://doi.org/10.1111/j.1528-1157.1987.tb04210.x>
103. 2004) Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin. Cancer Res. 10, 1141-1149.
< , N., Desmond, J. C., Kumagai, T., Gui, D., Said, J. W., Whittaker, S., Miyakawa, I., Koeffler, H. P. (https://doi.org/10.1158/1078-0432.CCR-03-0100>
104. 2004a) Valproic acid inhibits proliferation and induces apoptosis in acute myeloid leukemia cells expressing P-gp and MRP1. Leukemia 18, 1246-1251.
< , R., Faussat, A. M., Majdak, P., Perrot, J. Y., Chaoui, D., Legrand, O., Marie, J. P. (https://doi.org/10.1038/sj.leu.2403390>
105. 2004b) Valproic acid blood genomic expression patterns in children with epilepsy – a pilot study. Acta Neurol. Scand. 109, 159-168.
< , Y., Glauser, T. A., Gilbert, D. L., Hershey, A. D., Privitera, M. D., Ficker, D. M., Szaflarski, J. P., Sharp, F. R. (https://doi.org/10.1046/j.1600-0404.2003.00253.x>
106. 2000) Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia. Proc. Natl. Acad. Sci. USA, 97, 12091-12096.
< , C. T., Furuta, G. T., Synnestvedt, K., Colgan, S. P. (https://doi.org/10.1073/pnas.220211797>
107. 2000) Protein kinases as mediators of phosphoinositide 3-kinase signaling. Mol Pharmacol. 57, 652-658.
< , A. (https://doi.org/10.1016/S0026-895X(24)26463-4>
108. 2000) Sodium butyrate-induced differentiation of human LIM2537 colon cancer cells decreases GSK-3β activity and increases levels of both membrane-bound and Apc/axin/GSK-3β complex-associated pools of β-catenin. Oncol. Res. 12, 193-201.
< , E., Leet, C. S., Reyes, N. I., Dilley, R. J., Thomas, R. J., Phillips, W. A. (https://doi.org/10.3727/096504001108747684>
109. 1998) Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J. Natl. Cancer Inst. 90, 1621-1625.
< , R. P., Jr., He, L. Z., Richon, V., Calleja, E., Pandolfi, P. P. (https://doi.org/10.1093/jnci/90.21.1621>
110. 2001) Induction of differentiation in F9 cells and activation of peroxisome proliferator-activated receptor δ by valproic acid and its teratogenic derivatives. Mol. Pharmacol. 59, 1269-1276.
< , U., Siehler, S., Litfin, M., Nau, H., Gottlicher, M. (https://doi.org/10.1016/S0026-895X(24)12588-6>
111. 2002) A common mechanism of action for three mood- stabilizing drugs. Nature 417, 292-295.
< , R. S., Cheng, L., Mudge, A. W., Harwood, A. J. (https://doi.org/10.1038/417292a>
112. 2000) Ontogeny of valproic acid disposition and metabolism: a developmental study in postnatal lambs and adult sheep. Drug Metab. Dispos. 28, 912-919.
< , H., Kumar, S., Rurak, D. W., Kwan, E., Abbott, F. S., Riggs, K. W. (https://doi.org/10.1016/S0090-9556(24)15163-X>
113. 2006) Chronic administration of valproic acid inhibits prostate cancer cell growth in vitro and in vivo. Cancer Res. 66, 7237-7244.
< , Q., Sung, J., Chowdhury, W., Chen, C. L., Hoti, N., Shabbeer, S., Carducci, M., Rodriguez, R. (https://doi.org/10.1158/0008-5472.CAN-05-0487>
114. 2003) Induction of apoptosis by combined treatment with differentiation-inducing agents and interferon-α in human lung cancer cells. Anticancer Res. 23, 2537-2547.
, Y., Okabe-Kado, J., Kasukabe, T., Honma, Y. (
115. 2006) Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov. 5, 37-50.
< , C. B., Jones, P. A. (https://doi.org/10.1038/nrd1930>
116. 2001) The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J. Biol. Chem. 276, 31674-31683.
< , P. X., Huang, L. D., Jiang, Y. M., Gutkind, J. S., Manji, H. K., Chen, G. (https://doi.org/10.1074/jbc.M104309200>
117. 2004) Modulation of angiogenesis-related protein synthesis by valproic acid. Biochem. Biophys. Res. Commun. 316, 693-697.
< , D., Becker, U., Loitsch, S., Stein, J. (https://doi.org/10.1016/j.bbrc.2004.02.105>