Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2007, 53, 37-49

https://doi.org/10.14712/fb2007053020037

Valproic Acid, a Molecular Lead to Multiple Regulatory Pathways

M. Kostrouchová1, Z. Kostrouch1, Marta Kostrouchová2

1Laboratory of Molecular Pathology, Institute of Inherited Metabolic Disorders of the 1st Faculty of Medicine, Charles University, Prague, Czech Republic
2Laboratory of Molecular Biology and Genetics, Institute of Inherited Metabolic Disorders of the 1st Faculty of Medicine, Charles University, Prague, Czech Republic

Received February 2007
Accepted March 2007

Crossref Cited-by Linking

  • Kim Jeongah, Park Si-Hyung, Sun Woong: The Differential Developmental Neurotoxicity of Valproic Acid on Anterior and Posterior Neural Induction of Human Pluripotent Stem Cells. Int J Stem Cells 2025, 18, 49. <https://doi.org/10.15283/ijsc24066>
  • Cergel Eda, Tuzuner Burcin Alev, Turkyilmaz Ismet Burcu, Oktay Sehkar, Magaji Umar Faruk, Sacan Ozlem, Yanardag Refiye, Yarat Aysen: Reversal of Valproate\u2010Induced Major Salivary Gland Changes By Moringa Oleifera Extract in Rats. Chemistry & Biodiversity 2024, 21. <https://doi.org/10.1002/cbdv.202301959>
  • Elik Gülsüm, Oktay Sehkar, Turkyilmaz Ismet Burcu, Alev-Tuzuner Burcin, Magaji Umar Faruk, Sacan Ozlem, Yanardag Refiye, Yarat Aysen: Dermatoprotective effect of Moringa oleifera leaf extract on sodium valproate-induced skin damage in rats. Drug and Chemical Toxicology 2024, 47, 1257. <https://doi.org/10.1080/01480545.2024.2369586>
  • Abu Shamma Amani, Abu Ali Hijazi, Kamel Shayma: Synthesis, characterization and biological properties of mixed ligand complexes of cobalt(II/III) valproate with 2,9\u2010dimethyl\u20101,10\u2010phenanthroline and 1,10\u2010phenanthroline. Applied Organom Chemis 2018, 32. <https://doi.org/10.1002/aoc.3904>
  • Barneh Farnaz, Salimi Mona, Goshadrou Fatemeh, Ashtiani Minoo, Mirzaie Mehdi, Zali Hakimeh, Jafari Mohieddin: Valproic acid inhibits the protective effects of stromal cells against chemotherapy in breast cancer: Insights from proteomics and systems biology. J of Cellular Biochemistry 2018, 119, 9270. <https://doi.org/10.1002/jcb.27196>
  • Rabadiya Samir, Bhadada Shradhha, Dudhrejiya Ashvin, Vaishnav Devendra, Patel Bhoomika: Magnesium valproate ameliorates type 1 diabetes and cardiomyopathy in diabetic rats through estrogen receptors. Biomedicine & Pharmacotherapy 2018, 97, 919. <https://doi.org/10.1016/j.biopha.2017.10.137>
  • Leu Sy\u2010Jye, Yang Yi\u2010Yuan, Liu Hsing\u2010Cheng, Cheng Chieh\u2010Yu, Wu Yu\u2010Chen, Huang Ming\u2010Chyi, Lee Yuen\u2010Lun, Chen Chi\u2010Ching, Shen Winston W., Liu Ko\u2010Jiunn: Valproic Acid and Lithium Meditate Anti\u2010Inflammatory Effects by Differentially Modulating Dendritic Cell Differentiation and Function. Journal Cellular Physiology 2017, 232, 1176. <https://doi.org/10.1002/jcp.25604>
  • Um Soyoun, Lee Ho, Zhang Qingbin, Kim Hui Young, Lee Joo-Hee, Seo Byoung Moo: Valproic Acid Modulates the Multipotency in Periodontal Ligament Stem Cells via p53-Mediated Cell Cycle. Tissue Eng Regen Med 2017, 14, 153. <https://doi.org/10.1007/s13770-017-0027-4>
  • Sargolzaei Javad, Rabbani-Chadegani Azra, Mollaei Hossein, Deezagi Abdolkhalegh: Spectroscopic analysis of the interaction of valproic acid with histone H1 in solution and in chromatin structure. International Journal of Biological Macromolecules 2017, 99, 427. <https://doi.org/10.1016/j.ijbiomac.2017.02.098>
  • Abu Ali Hijazi, Abu Shamma Amani, Kamel Shayma: New mixed ligand cobalt(II/III) complexes based on the drug sodium valproate and bioactive nitrogen-donor ligands. Synthesis, structure and biological properties. Journal of Molecular Structure 2017, 1142, 40. <https://doi.org/10.1016/j.molstruc.2017.04.048>
  • Zhang Y., Wu J.Y., Weng L.H., Li X.X., Yu L.J., Xu Y.: Valproic acid protects against MPP+-mediated neurotoxicity in SH-SY5Y Cells through autophagy. Neuroscience Letters 2017, 638, 60. <https://doi.org/10.1016/j.neulet.2016.12.017>
  • Flores-Ramos Mónica, Leff Philippe, Fernández-Guasti Alonso, Becerra Palars Claudia: Is it important to consider the sex of the patient when using lithium or valproate to treat the bipolar disorder?. Pharmacology Biochemistry and Behavior 2017, 152, 105. <https://doi.org/10.1016/j.pbb.2016.02.003>
  • Vishwakarma Sandeep Kumar, Bardia Avinash, Chandrakala L., Arshiya Sana, Paspala Syed Ameer Basha, Satti Vishnupriya, Khan Aleem Ahmed: Enhanced neuroprotective effect of mild-hypothermia with VPA against ethanol\u2013mediated neuronal injury. Tissue and Cell 2017, 49, 638. <https://doi.org/10.1016/j.tice.2017.09.004>
  • Zhang Hailong, Zhang Wei, Zhou Yong, Jiang Yuhua, Li Shupeng: Dual Functional Mesoporous Silicon Nanoparticles Enhance the Radiosensitivity of VPA in Glioblastoma. Translational Oncology 2017, 10, 229. <https://doi.org/10.1016/j.tranon.2016.12.011>
  • Hawkins Kate E., Moschidou Dafni, Faccenda Danilo, Wruck Wasco, Martin-Trujillo Alex, Hau Kwan-Leong, Ranzoni Anna Maria, Sanchez-Freire Veronica, Tommasini Fabio, Eaton Simon, De Coppi Paolo, Monk David, Campanella Michelangelo, Thrasher Adrian J., Adjaye James, Guillot Pascale V.: Human Amniocytes Are Receptive to Chemically Induced Reprogramming to Pluripotency. Molecular Therapy 2017, 25, 427. <https://doi.org/10.1016/j.ymthe.2016.11.014>
  • Venosa Alessandro, Gow James G., Hall LeRoy, Malaviya Rama, Gow Andrew J., Laskin Jeffrey D., Laskin Debra L.: Regulation of Nitrogen Mustard-Induced Lung Macrophage Activation by Valproic Acid, a Histone Deacetylase Inhibitor. Toxicological Sciences 2017, 157, 222. <https://doi.org/10.1093/toxsci/kfx032>
  • Bertelsen Freja, Folloni Davide, Møller Arne, Landau Anne M., Scheel-Krüger Jørgen, Winterdahl Michael: Suppressed play behaviour and decreased oxytocin receptor binding in the amygdala after prenatal exposure to low-dose valproic acid. Behavioural Pharmacology 2017, 28, 450. <https://doi.org/10.1097/FBP.0000000000000316>
  • Ishida Ryo, Koyanagi-Aoi Michiyo, Oshima Nobu, Kakeji Yoshihiro, Aoi Takashi: The Tissue-Reconstructing Ability of Colon CSCs Is Enhanced by FK506 and Suppressed by GSK3 Inhibition. Molecular Cancer Research 2017, 15, 1455. <https://doi.org/10.1158/1541-7786.MCR-17-0071>
  • Kim Ki Chan, Choi Chang Soon, Gonzales Edson Luck T., Mabunga Darine Froy N., Lee Sung Hoon, Jeon Se Jin, Hwangbo Ram, Hong Minha, Ryu Jong Hoon, Han Seol-Heui, Bahn Geon Ho, Shin Chan Young: Valproic Acid Induces Telomerase Reverse Transcriptase Expression during Cortical Development. Exp Neurobiol 2017, 26, 252. <https://doi.org/10.5607/en.2017.26.5.252>
  • Khan Sabbir, Jena Gopabandhu: Valproic Acid Improves Glucose Homeostasis by Increasing Beta-Cell Proliferation, Function, and Reducing its Apoptosis through HDAC Inhibition in Juvenile Diabetic Rat. J Biochem Mol Toxicol 2016, 30, 438. <https://doi.org/10.1002/jbt.21807>
  • Welbat Jariya Umka, Chaisawang Pornthip, Chaijaroonkhanarak Wunnee, Prachaney Parichat, Pannangrong Wanassanun, Sripanidkulchai Bungorn, Wigmore Peter: Kaempferia parviflora extract ameliorates the cognitive impairments and the reduction in cell proliferation induced by valproic acid treatment in rats. Annals of Anatomy - Anatomischer Anzeiger 2016, 206, 7. <https://doi.org/10.1016/j.aanat.2016.04.029>
  • Hardin Heather, Yu Xiao-Min, Harrison April D., Larrain Carolina, Zhang Ranran, Chen Jidong, Chen Herbert, Lloyd Ricardo V.: Generation of Novel Thyroid Cancer Stem-Like Cell Clones. The American Journal of Pathology 2016, 186, 1662. <https://doi.org/10.1016/j.ajpath.2016.02.003>
  • Khan Sabbir, Kumar Sandeep, Jena Gopabandhu: Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat. Biochimie 2016, 125, 42. <https://doi.org/10.1016/j.biochi.2016.02.014>
  • Guillot Pascale V.: Induced pluripotent stem (iPS) cells from human fetal stem cells. Best Practice & Research Clinical Obstetrics & Gynaecology 2016, 31, 112. <https://doi.org/10.1016/j.bpobgyn.2015.08.007>
  • Woods Jared K., Rogina Blanka: The effects of Rpd3 on fly metabolism, health, and longevity. Experimental Gerontology 2016, 86, 124. <https://doi.org/10.1016/j.exger.2016.02.015>
  • Jin Haibin, Guo Xiaoming: Valproic acid ameliorates coxsackievirus-B3-induced viral myocarditis by modulating Th17/Treg imbalance. Virol J 2016, 13. <https://doi.org/10.1186/s12985-016-0626-z>
  • Sun Lichun, Qian Qingqing, Sun Guangchun, Mackey L. Vienna, Fuselier Joseph A., Coy David H., Yu Cui-Yun: Valproic acid induces NET cell growth arrest and enhances tumor suppression of the receptor-targeted peptide\u2013drug conjugate via activating somatostatin receptor type II. Journal of Drug Targeting 2016, 24, 169. <https://doi.org/10.3109/1061186X.2015.1066794>
  • FENG SHUYU, YANG YUE, LV JINGYI, SUN LICHUN, LIU MINGQIU: Valproic acid exhibits different cell growth arrest effect in three HPV-positive/negative cervical cancer cells and possibly via inducing Notch1 cleavage and E6 downregulation. International Journal of Oncology 2016, 49, 422. <https://doi.org/10.3892/ijo.2016.3508>
  • Khan Sabbir, Jena Gopabandhu, Tikoo Kulbhushan, Kumar Vinod: Valproate attenuates the proteinuria, podocyte and renal injury by facilitating autophagy and inactivation of NF-\u03baB/iNOS signaling in diabetic rat. Biochimie 2015, 110, 1. <https://doi.org/10.1016/j.biochi.2014.12.015>
  • Balasubramanian Diana, Deng Alicia X., Doudney Kit, Hampton Mark B., Kennedy Martin A.: Valproic acid exposure leads to upregulation and increased promoter histone acetylation of sepiapterin reductase in a serotonergic cell line. Neuropharmacology 2015, 99, 79. <https://doi.org/10.1016/j.neuropharm.2015.06.018>
  • Juliandi Berry, Tanemura Kentaro, Igarashi Katsuhide, Tominaga Takashi, Furukawa Yusuke, Otsuka Maky, Moriyama Noriko, Ikegami Daigo, Abematsu Masahiko, Sanosaka Tsukasa, Tsujimura Keita, Narita Minoru, Kanno Jun, Nakashima Kinichi: Reduced Adult Hippocampal Neurogenesis and Cognitive Impairments following Prenatal Treatment of the Antiepileptic Drug Valproic Acid. Stem Cell Reports 2015, 5, 996. <https://doi.org/10.1016/j.stemcr.2015.10.012>
  • Ximenes José Christian Machado, Neves Kelly Rose Tavares, Leal Luzia Kalyne A. M., do Carmo Marta Regina Santos, Brito Gerly Anne de Castro, Naffah-Mazzacoratti Maria da Graça, Cavalheiro Ésper Abrão, Viana Glauce Socorro de Barros: Valproic Acid Neuroprotection in the 6-OHDA Model of Parkinson\u2019s Disease Is Possibly Related to Its Anti-Inflammatory and HDAC Inhibitory Properties. Journal of Neurodegenerative Diseases 2015, 2015, 1. <https://doi.org/10.1155/2015/313702>
  • Chu Tianci, Zhou Hengxing, Lu Lu, Kong Xiaohong, Wang Tianyi, Pan Bin, Feng Shiqing: Valproic Acid-Mediated Neuroprotection and Neurogenesis After Spinal Cord Injury: From Mechanism to Clinical Potential. Regen. Med. 2015, 10, 193. <https://doi.org/10.2217/rme.14.86>
  • Long Jun, Chang Li, Shen Yan, Gao Wen-Hui, Wu Yue-Nv, Dou Han-Bo, Huang Meng-Meng, Wang Ying, Fang Wei-Yue, Shan Jie-Hui, Wang Yue-Ying, Zhu Jiang, Chen Zhu, Hu Jiong: Valproic Acid Ameliorates Graft-versus-Host Disease by Downregulating Th1 and Th17 Cells. The Journal of Immunology 2015, 195, 1849. <https://doi.org/10.4049/jimmunol.1500578>
  • ABAZA MOHAMED-SALAH I., BAHMAN ABDUL-MAJEED, AL-ATTIYAH RAJA\u2019A J.: Valproic acid, an anti-epileptic drug and a histone deacetylase inhibitor, in combination with proteasome inhibitors exerts antiproliferative, pro-apoptotic and chemosensitizing effects in human colorectal cancer cells: Underlying molecular mechanisms. International Journal of Molecular Medicine 2014, 34, 513. <https://doi.org/10.3892/ijmm.2014.1795>
  • Bitman Michal, Vrzal Radim, Dvorak Zdenek, Pavek Petr: Valproate activates ERK signaling pathway in primary human hepatocytes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014, 158, 039. <https://doi.org/10.5507/bp.2012.038>
  • Kim Youn-Jung, Lee Jina, Song Mi-Kyung, Han Taejun, Ryu Jae-Chun: Valproic acid inhibits cell size and cell proliferation by AMPK-mediated mTOR signaling pathway in JEG-3 cells. BioChip J 2013, 7, 267. <https://doi.org/10.1007/s13206-013-7310-9>
  • Stempin Sandra, Andres Susanne, Bumke Scheer Maja, Rode Ariane, Nau Heinz, Seidel Albrecht, Lampen Alfonso: Valproic acid and its derivatives enhanced estrogenic activity but not androgenic activity in a structure dependent manner. Reproductive Toxicology 2013, 42, 49. <https://doi.org/10.1016/j.reprotox.2013.07.019>
  • Chiu Chi-Tso, Wang Zhifei, Hunsberger Joshua G., Chuang De-Maw: Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder. Pharmacological Reviews 2013, 65, 105. <https://doi.org/10.1124/pr.111.005512>
  • Mallela Mural, Hrubec Theresa: Reduction in Valproic Acid\u2013Induced Neural Tube Defects by Maternal Immune Stimulation: Role of Apoptosis. Birth Defects Research Pt B 2012, 95, 296. <https://doi.org/10.1002/bdrb.21018>
  • Van Nifterik Krista A., Van den Berg Jaap, Slotman Ben J., Lafleur M. Vincent M., Sminia Peter, Stalpers Lukas J. A.: Valproic acid sensitizes human glioma cells for temozolomide and \u03b3-radiation. J Neurooncol 2012, 107, 61. <https://doi.org/10.1007/s11060-011-0725-z>
  • Kwieci\u0144ska Patrycja, Taubøll Erik, Gregoraszczuk Ewa \u0141ucja: Comparison of the effects of valproic acid and levetiracetam on apoptosis in the human ovarian cancer cell line OVCAR-3. Pharmacological Reports 2012, 64, 603. <https://doi.org/10.1016/S1734-1140(12)70856-3>
  • Rossetti Franco, de Araujo Furtado Marcio, Pak Thomas, Bailey Keenan, Shields Mallory, Chanda Soma, Addis Michael, Robertson Benjamin D., Moffett Mark, Lumley Lucille A., Yourick Debra L.: Combined diazepam and HDAC inhibitor treatment protects against seizures and neuronal damage caused by soman exposure. NeuroToxicology 2012, 33, 500. <https://doi.org/10.1016/j.neuro.2012.02.010>
  • Cowden John, Padnos Beth, Hunter Deborah, MacPhail Robert, Jensen Karl, Padilla Stephanie: Developmental exposure to valproate and ethanol alters locomotor activity and retino-tectal projection area in zebrafish embryos. Reproductive Toxicology 2012, 33, 165. <https://doi.org/10.1016/j.reprotox.2011.11.111>
  • Dell'Aversana Carmela, Lepore Ilaria, Altucci Lucia: HDAC modulation and cell death in the clinic. Experimental Cell Research 2012, 318, 1229. <https://doi.org/10.1016/j.yexcr.2012.01.025>
  • Forthun Rakel Brendsdal, SenGupta Tanima, Skjeldam Hanne Kim, Lindvall Jessica Margareta, McCormack Emmet, Gjertsen Bjørn Tore, Nilsen Hilde, Moura Ivan Cruz: Cross-Species Functional Genomic Analysis Identifies Resistance Genes of the Histone Deacetylase Inhibitor Valproic Acid. PLoS ONE 2012, 7, e48992. <https://doi.org/10.1371/journal.pone.0048992>
  • Gillet Nicolas, Vandermeers Fabian, De Brogniez Alix, Florins Arnaud, Nigro Annamaria, François Carole, Bouzar Amel-Baya, Verlaeten Olivier, Stern Eric, Lambert Didier M., Wouters Johan, Willems Luc: Chemoresistance to Valproate Treatment of Bovine Leukemia Virus-Infected Sheep; Identification of Improved HDAC Inhibitors. Pathogens 2012, 1, 65. <https://doi.org/10.3390/pathogens1020065>
  • Wittenburg Luke A., Bisson Liam, Rose Barbara J., Korch Christopher, Thamm Douglas H.: The histone deacetylase inhibitor valproic acid sensitizes human and canine osteosarcoma to doxorubicin. Cancer Chemother Pharmacol 2011, 67, 83. <https://doi.org/10.1007/s00280-010-1287-z>
  • Khan Sabbir, Ahmad Tauseef, Parekh Chintan Vishnubhai, Trivedi Priyanka Pushkarbhai, Kushwaha Sapana, Jena Gopabandhu: Investigation on sodium valproate induced germ cell damage, oxidative stress and genotoxicity in male Swiss mice. Reproductive Toxicology 2011, 32, 385. <https://doi.org/10.1016/j.reprotox.2011.09.007>
  • Gotfryd Kamil, Hansen Maria, Kawa Anna, Ellerbeck Ursula, Nau Heinz, Berezin Vladimir, Bock Elisabeth, Walmod Peter S.: The Teratogenic Potencies of Valproic Acid Derivatives and Their Effects on Biological End\u2010points are Related to Changes in Histone Deacetylase and Erk1/2 Activities. Basic Clin Pharma Tox 2011, 109, 164. <https://doi.org/10.1111/j.1742-7843.2011.00702.x>
  • Wu Jason Boyang, Shih Jean C.: Valproic Acid Induces Monoamine Oxidase A via Akt/Forkhead Box O1 Activation. Molecular Pharmacology 2011, 80, 714. <https://doi.org/10.1124/mol.111.072744>
  • Go Hyo Sang, Seo Jung Eun, Kim Ki Chan, Han So Min, Kim Pitna, Kang Young Sun, Han Seol Heui, Shin Chan Young, Ko Kwang Ho: Valproic acid inhibits neural progenitor cell death by activation of NF-\u03baB signaling pathway and up-regulation of Bcl-XL. J Biomed Sci 2011, 18. <https://doi.org/10.1186/1423-0127-18-48>
  • Haerian Batoul Sadat, Lim Kheng Seang, Tan Chong Tin, Raymond Azman Ali, Mohamed Zahurin: Association of ABCB1 Gene Polymorphisms and Their Haplotypes with Response to Antiepileptic Drugs: a Systematic Review and Meta-Analysis. Pharmacogenomics 2011, 12, 713. <https://doi.org/10.2217/pgs.10.212>
  • Jentink Janneke, Bakker Marian K., Nijenhuis Cynthia M., Wilffert Bob, de Jong-van den Berg Lolkje T.W.: Does folic acid use decrease the risk for spina bifida after in utero exposure to valproic acid?. Pharmacoepidem. Drug Safe. 2010, 19, 803. <https://doi.org/10.1002/pds.1975>
  • Nuutinen Tapio, Suuronen Tiina, Kauppinen Anu, Salminen Antero: Valproic acid stimulates clusterin expression in human astrocytes: Implications for Alzheimer's disease. Neuroscience Letters 2010, 475, 64. <https://doi.org/10.1016/j.neulet.2010.03.041>
  • Umka J., Mustafa S., ElBeltagy M., Thorpe A., Latif L., Bennett G., Wigmore P.M.: Valproic acid reduces spatial working memory and cell proliferation in the hippocampus. Neuroscience 2010, 166, 15. <https://doi.org/10.1016/j.neuroscience.2009.11.073>
  • Zhang Z.Y., Zhang Z., Schluesener H.J.: MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis. Neuroscience 2010, 169, 370. <https://doi.org/10.1016/j.neuroscience.2010.04.074>
  • ADAB NAGHME, O'DONOGHUE MICHAEL F: ANTI-EPILEPTIC DRUGS AND BRAIN AND BEHAVIOURAL DEVELOPMENT IN ANIMAL MODELS AND HUMANS. Fet. Matern. Med. Rev. 2010, 21, 283. <https://doi.org/10.1017/S0965539510000100>
  • Gotfryd Kamil, Skladchikova Galina, Lepekhin Eugene A, Berezin Vladimir, Bock Elisabeth, Walmod Peter S: Cell type-specific anti-cancer properties of valproic acid: independent effects on HDAC activity and Erk1/2 phosphorylation. BMC Cancer 2010, 10. <https://doi.org/10.1186/1471-2407-10-383>
  • Erlich Rafael B., Rickwood Danny, Coman William B., Saunders Nicholas A., Guminski Alexander: Valproic acid as a therapeutic agent for head and neck squamous cell carcinomas. Cancer Chemother Pharmacol 2009, 63, 381. <https://doi.org/10.1007/s00280-008-0747-1>
  • Cournoyer Philippe, Desrosiers Richard R.: Valproic acid enhances protein l-isoaspartyl methyltransferase expression by stimulating extracellular signal-regulated kinase signaling pathway. Neuropharmacology 2009, 56, 839. <https://doi.org/10.1016/j.neuropharm.2009.01.008>
  • Zádori Dénes, Geisz Andrea, Vámos Enik\u0151, Vécsei László, Klivényi Péter: Valproate ameliorates the survival and the motor performance in a transgenic mouse model of Huntington's disease. Pharmacology Biochemistry and Behavior 2009, 94, 148. <https://doi.org/10.1016/j.pbb.2009.08.001>
  • Erhart S, Amann A, Haberlandt E, Edlinger G, Schmid A, Filipiak W, Schwarz K, Mochalski P, Rostasy K, Karall D, Scholl-Bürgi S: 3-Heptanone as a potential new marker for valproic acid therapy. J. Breath Res. 2009, 3, 016004. <https://doi.org/10.1088/1752-7155/3/1/016004>
  • Bouzar Amel Baya, Boxus Mathieu, Defoiche Julien, Berchem Guy, Macallan Derek, Pettengell Ruth, Willis Fenella, Burny Arsène, Lagneaux Laurence, Bron Dominique, Chatelain Bernard, Chatelain Christian, Willems Luc: Valproate synergizes with purine nucleoside analogues to induce apoptosis of B\u2010chronic lymphocytic leukaemia cells. Br J Haematol 2009, 144, 41. <https://doi.org/10.1111/j.1365-2141.2008.07426.x>
  • Floris Giuseppe, Debiec-Rychter Maria, Sciot Raf, Stefan Cristiana, Fieuws Steffen, Machiels Kathleen, Atadja Peter, Wozniak Agnieszka, Faa Gavino, Scho\u0308ffski Patrick: High Efficacy of Panobinostat Towards Human Gastrointestinal Stromal Tumors in a Xenograft Mouse Model. Clinical Cancer Research 2009, 15, 4066. <https://doi.org/10.1158/1078-0432.CCR-08-2588>
  • Smith Jacqueline, Whitehall John: Sodium Valproate and the Fetus: A Case Study and Review of the Literature. Neonatal Network 2009, 28, 363. <https://doi.org/10.1891/0730-0832.28.6.363>
  • Fischer Wiebke, Praetor Katrin, Metzner Linda, Neubert Reinhard H.H., Brandsch Matthias: Transport of valproate at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells: Mechanism and substrate specificity. European Journal of Pharmaceutics and Biopharmaceutics 2008, 70, 486. <https://doi.org/10.1016/j.ejpb.2008.05.022>
  • Hoffmann Katrin, Czapp Marion, Löscher Wolfgang: Increase in antiepileptic efficacy during prolonged treatment with valproic acid: Role of inhibition of histone deacetylases?. Epilepsy Research 2008, 81, 107. <https://doi.org/10.1016/j.eplepsyres.2008.04.019>
  • Lamarre Mélanie, Desrosiers Richard R.: Up-regulation of protein l-isoaspartyl methyltransferase expression by lithium is mediated by glycogen synthase kinase-3 inactivation and \u03b2-catenin stabilization. Neuropharmacology 2008, 55, 669. <https://doi.org/10.1016/j.neuropharm.2008.05.033>
  • Krogenæs A.K., Taubøll E., Stien A., Oskam I.C., Lyche J.L., Dahl E., Thomassen R.F., Sweeney T., Ropstad E.: Valproate affects reproductive endocrine function, testis diameter and some semen variables in non-epileptic adolescent goat bucks. Theriogenology 2008, 70, 15. <https://doi.org/10.1016/j.theriogenology.2008.01.029>
  • Ikeda Masaaki: Effects of moodstabilizer on the circadian system: possible implication for abnormalities in mood disorders. Folia Pharmacol. Jpn. 2007, 130, 469. <https://doi.org/10.1254/fpj.130.469>
Crossref Cited-by Linking logo