Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2008, 54, 18-23

https://doi.org/10.14712/fb2008054010018

Differences in Expression of Cholesterol 7α-Hydroxylase between PHHC and Wistar Rats

Jaroslav A. Hubáček1,2, D. Bobková2, R. Bohuslavová2, R. Poledne1,2

1Cardiovascular Research Center, Prague, Czech Republic
2Institute for Clinical and Experimental Medicine, Prague, Czech Republic

Received August 2007
Accepted December 2007

References

1. Bassam, B. J., Caetano-Anolles, G., Gresshoff, P. M. (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80-83. Erratum in: Anal. Biochem. 1991; 198, 217. <https://doi.org/10.1016/0003-2697(91)90120-I>
2. Befekadu, G., Kovar, J., Poledne, R. (1992) High sensitivity of PHHC rat to dietary cholesterol. Physiol. Res. 41, 263-266.
3. Bobkova, D., Honsova, E., Kovar, J., Poledne, R. (2004) Effect of diets on lipoprotein concentrations in heterozygous apolipoprotein E-deficient mice. Physiol. Res. 53, 635-643.
4. Chen, W., Owsley, E., Yang, Y., Stroup, D., Chiang, J. Y. (2001) Nuclear receptor-mediated repression of human cholesterol 7-α hydroxylase gene transcription by bile acids. J. Lipid Res. 42, 1402-1412. <https://doi.org/10.1016/S0022-2275(20)30272-8>
5. Chiang, J. Y., Stroup, D. (1994) Identification and characterisation of a putative bile acid-responsive element in cholesterol 7 α-hydroxylase gene promoter. J. Biol. Chem. 269, 17502-17507. <https://doi.org/10.1016/S0021-9258(17)32469-9>
6. Gupta, S., Pandak, W. M., Hymelon, P. B. (2002) LXR α is the dominant regulator of CYP7A1 transcription. Biochem. Biophys. Res. Commun. 293, 338-343. <https://doi.org/10.1016/S0006-291X(02)00229-2>
7. Havel, R. J., Eder, H. A., Bragdon, J. H. (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345-1353. <https://doi.org/10.1172/JCI103182>
8. Hoekstra, M., Out, R., Kruijt, J. K., Van Eck, M., Van Berkel, T. J. (2005) Diet induced regulation of genes involved in cholesterol metabolism in rat liver parenchymal and Kupfer cells. J. Hepatol. 42, 400-407. <https://doi.org/10.1016/j.jhep.2004.11.032>
9. Hofman, M. K., Wegemans, R. M., Zock, P. L., Shouten, E. G., Katan, E. G., Princen, H. M. (2004) CYP7A1 A-278C polymorphism affects the response of plasma lipids after dietary cholesterol or cafestol interventions in humans. J. Nutr. 134, 2200-2204. <https://doi.org/10.1093/jn/134.9.2200>
10. Hubacek, J. A., Pistulkova, H., Skodova, Z., Lanska, V., Poledne, R. (2003a) Polymorphism in the regulatory part of the cholesterol 7 α hydroxylase gene in children with high and low levels of cholesterol. Cas. Lek. Cesk. 142, 423-426.
11. Hubacek, J. A., Pitha, J., Skodova, Z., Poledne, R., Lanska, V., Waterworth, D. M., Humphries, S. E., Talmud, P. J. (2003b) Czech MONICA Study Polymorphisms in CYP-7A1, not APOE, influence the change in plasma lipids in response to population dietary change in an 8 year follow-up; results from the Czech MONICA study. Clin. Biochem. 36, 263-267. <https://doi.org/10.1016/S0009-9120(03)00025-0>
12. Hubacek, J. A., Bobkova, D. (2006) Role of cholesterol 7 α hydroxylase (CYP7A1) in nutri-and pharmaco-genetics of cholesterol lowering. Mol. Diagn. Ther. 10, 93-100. <https://doi.org/10.1007/BF03256448>
13. Innis-Whitehouse, W., Li, X., Brown, W. V., Le, N. A. (1998) An efficient chromatographic system for lipoprotein fractionation using whole plasma. J. Lipid Res. 39, 679-690. <https://doi.org/10.1016/S0022-2275(20)33305-8>
14. Kovar, J., Havel, R. J. (2002) Sources and properties of triglyceride-rich lipoproteins containing apoB-48 and apoB-100 in postprandial blood plasma of patients with primary combined hyperlipidemia. J. Lipid Res. 43, 1026-1034. <https://doi.org/10.1194/jlr.M100435-JLR200>
15. Kovar, J., Suchanek, P., Hubacek, J. A., Poledne, R. (2004) The A-204C polymorphism in the cholesterol 7α-hydroxylase (CYP7A1) gene determines the cholesterolemia responsiveness to a high-fat diet. Physiol. Res. 53, 565-568. <https://doi.org/10.33549/physiolres.930558>
16. Livak, K. J., Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔCT) method. Methods 25, 402-408. <https://doi.org/10.1006/meth.2001.1262>
17. Miller, S. A., Dykes, D. D., Polesky, H. F. (1988) A simple salting out procedure for DNA extraction from human nucleated cells. Nucleic Acids Res. 16, 1215. <https://doi.org/10.1093/nar/16.3.1215>
18. Orita, M., Suzuki, Y., Sekiya, T., Hayashi, K. (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874-879. <https://doi.org/10.1016/0888-7543(89)90129-8>
19. Poledne, R. (1986) Effect of diet on cholesterol metabolism in the PHHC rat. In: Nutritional Effects on Cholesterol Metabolism. Ed. Beynen, A. C., pp. 91-98, Transmondial, Voorthingen.
20. Roberts, C. K., Liang, K., Barnard, J., Kim, C. H., Vaziri, N. D. (2004) HMG-CoA reductase, cholesterol 7α-hydroxylase, LDL receptor, SR-B1, and ACAT in diet-induced syndrome X. Kidney Int. 66, 1503-1511. <https://doi.org/10.1111/j.1523-1755.2004.00914.x>
21. Russel, D. W. (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137-174. <https://doi.org/10.1146/annurev.biochem.72.121801.161712>
22. Stroup, D., Crestani, M., Chiang, J. Y. (1997) Identification of a bile acid response element in the cholesterol 7 α-hydroxylase gene CYP7A. Am. J. Physiol. 273, G508-G517.
23. Wang, J., Freeman, D. J., Grundy, S. M., Levine, D. M., Guerra, R., Cohen, J. C. (1998) Linkage between cholesterol 7α-hydroxylase and high plasma low-density lipoprotein cholesterol concentrations. J. Clin. Invest. 101, 1283-1291. <https://doi.org/10.1172/JCI1343>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive