Fol. Biol. 2008, 54, 18-23
https://doi.org/10.14712/fb2008054010018
Differences in Expression of Cholesterol 7α-Hydroxylase between PHHC and Wistar Rats
References
1. , B. J., Caetano-Anolles, G., Gresshoff, P. M. (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80-83. Erratum in: Anal. Biochem. 1991; 198, 217.
<https://doi.org/10.1016/0003-2697(91)90120-I>
2. , G., Kovar, J., Poledne, R. (1992) High sensitivity of PHHC rat to dietary cholesterol. Physiol. Res. 41, 263-266.
3. , D., Honsova, E., Kovar, J., Poledne, R. (2004) Effect of diets on lipoprotein concentrations in heterozygous apolipoprotein E-deficient mice. Physiol. Res. 53, 635-643.
4. , W., Owsley, E., Yang, Y., Stroup, D., Chiang, J. Y. (2001) Nuclear receptor-mediated repression of human cholesterol 7-α hydroxylase gene transcription by bile acids. J. Lipid Res. 42, 1402-1412.
<https://doi.org/10.1016/S0022-2275(20)30272-8>
5. , J. Y., Stroup, D. (1994) Identification and characterisation of a putative bile acid-responsive element in cholesterol 7 α-hydroxylase gene promoter. J. Biol. Chem. 269, 17502-17507.
<https://doi.org/10.1016/S0021-9258(17)32469-9>
6. , S., Pandak, W. M., Hymelon, P. B. (2002) LXR α is the dominant regulator of CYP7A1 transcription. Biochem. Biophys. Res. Commun. 293, 338-343.
<https://doi.org/10.1016/S0006-291X(02)00229-2>
7. , R. J., Eder, H. A., Bragdon, J. H. (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345-1353.
<https://doi.org/10.1172/JCI103182>
8. , M., Out, R., Kruijt, J. K., Van Eck, M., Van Berkel, T. J. (2005) Diet induced regulation of genes involved in cholesterol metabolism in rat liver parenchymal and Kupfer cells. J. Hepatol. 42, 400-407.
<https://doi.org/10.1016/j.jhep.2004.11.032>
9. , M. K., Wegemans, R. M., Zock, P. L., Shouten, E. G., Katan, E. G., Princen, H. M. (2004) CYP7A1 A-278C polymorphism affects the response of plasma lipids after dietary cholesterol or cafestol interventions in humans. J. Nutr. 134, 2200-2204.
<https://doi.org/10.1093/jn/134.9.2200>
10. , J. A., Pistulkova, H., Skodova, Z., Lanska, V., Poledne, R. (2003a) Polymorphism in the regulatory part of the cholesterol 7 α hydroxylase gene in children with high and low levels of cholesterol. Cas. Lek. Cesk. 142, 423-426.
11. , J. A., Pitha, J., Skodova, Z., Poledne, R., Lanska, V., Waterworth, D. M., Humphries, S. E., Talmud, P. J. (2003b) Czech MONICA Study Polymorphisms in CYP-7A1, not APOE, influence the change in plasma lipids in response to population dietary change in an 8 year follow-up; results from the Czech MONICA study. Clin. Biochem. 36, 263-267.
<https://doi.org/10.1016/S0009-9120(03)00025-0>
12. , J. A., Bobkova, D. (2006) Role of cholesterol 7 α hydroxylase (CYP7A1) in nutri-and pharmaco-genetics of cholesterol lowering. Mol. Diagn. Ther. 10, 93-100.
<https://doi.org/10.1007/BF03256448>
13. , W., Li, X., Brown, W. V., Le, N. A. (1998) An efficient chromatographic system for lipoprotein fractionation using whole plasma. J. Lipid Res. 39, 679-690.
<https://doi.org/10.1016/S0022-2275(20)33305-8>
14. , J., Havel, R. J. (2002) Sources and properties of triglyceride-rich lipoproteins containing apoB-48 and apoB-100 in postprandial blood plasma of patients with primary combined hyperlipidemia. J. Lipid Res. 43, 1026-1034.
<https://doi.org/10.1194/jlr.M100435-JLR200>
15. , J., Suchanek, P., Hubacek, J. A., Poledne, R. (2004) The A-204C polymorphism in the cholesterol 7α-hydroxylase (CYP7A1) gene determines the cholesterolemia responsiveness to a high-fat diet. Physiol. Res. 53, 565-568.
<https://doi.org/10.33549/physiolres.930558>
16. , K. J., Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔCT) method. Methods 25, 402-408.
<https://doi.org/10.1006/meth.2001.1262>
17. , S. A., Dykes, D. D., Polesky, H. F. (1988) A simple salting out procedure for DNA extraction from human nucleated cells. Nucleic Acids Res. 16, 1215.
<https://doi.org/10.1093/nar/16.3.1215>
18. , M., Suzuki, Y., Sekiya, T., Hayashi, K. (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874-879.
<https://doi.org/10.1016/0888-7543(89)90129-8>
19. Poledne, R. (1986) Effect of diet on cholesterol metabolism in the PHHC rat. In: Nutritional Effects on Cholesterol Metabolism. Ed. Beynen, A. C., pp. 91-98, Transmondial, Voorthingen.
20. , C. K., Liang, K., Barnard, J., Kim, C. H., Vaziri, N. D. (2004) HMG-CoA reductase, cholesterol 7α-hydroxylase, LDL receptor, SR-B1, and ACAT in diet-induced syndrome X. Kidney Int. 66, 1503-1511.
<https://doi.org/10.1111/j.1523-1755.2004.00914.x>
21. , D. W. (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137-174.
<https://doi.org/10.1146/annurev.biochem.72.121801.161712>
22. , D., Crestani, M., Chiang, J. Y. (1997) Identification of a bile acid response element in the cholesterol 7 α-hydroxylase gene CYP7A. Am. J. Physiol. 273, G508-G517.
23. , J., Freeman, D. J., Grundy, S. M., Levine, D. M., Guerra, R., Cohen, J. C. (1998) Linkage between cholesterol 7α-hydroxylase and high plasma low-density lipoprotein cholesterol concentrations. J. Clin. Invest. 101, 1283-1291.
<https://doi.org/10.1172/JCI1343>
