Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2008, 54, 46-52

https://doi.org/10.14712/fb2008054020046

Quantitative Analysis of Transforming Growth Factor β Isoforms mRNA in the Human Corneal Epithelium

Barbara Strzalka1, M. Dorecka2, A. Stanik-Walentek2, M. Kowalczyk3, M. Kapral1, W. Romaniuk2, U. Mazurek1, L. Swiatkowska1

1Department of Molecular Biology, Medical University of Silesia, Sosnowiec, Poland
2Department of Ophthalmology, Medical University of Silesia, Sosnowiec, Poland
3Department of Medical Genetics, Medical University of Silesia, Sosnowiec, Poland

Received December 2007
Accepted January 2008

References

1. Border, W. A., Noble, N. A. (1994) Transforming growth factor β in tissue fibrosis. N. Engl. J. Med. 10, 1286-1292.
2. Bustin, S. A. (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169-193. <https://doi.org/10.1677/jme.0.0250169>
3. Bustin, S. A. (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29, 23-39. <https://doi.org/10.1677/jme.0.0290023>
4. Carrington, L. M., Albon, J., Anderson, I., Kamma, C., Boulton, M. (2006) Differential regulation of key stages in early corneal wound healing by TGF-β isoforms and their inhibitors. Invest. Ophthalmol. Vis. Sci. 47, 1886-1894. <https://doi.org/10.1167/iovs.05-0635>
5. Chakravarti, S. (2001) The cornea through the eyes of knockout mice. Exp. Eye Res. 73, 411-419. <https://doi.org/10.1006/exer.2001.1055>
6. Chakravarti, S., Wu, F., Vij, N., Roberts, L., Joyce, S. (2004) Microarray studies reveal macrophage-like function of stromal keratocytes in the cornea. Invest. Ophthalmol. Vis. Sci. 45, 3475-3484. <https://doi.org/10.1167/iovs.04-0343>
7. Chen, C., Michelini-Norris, B., Stevens, S., Rowsey, J. (2000) Measurement of mRNA for TGFβ and extracellular matrix proteins in corneas of rats after PRK. Invest. Ophthalmol. Vis. Sci. 41, 4108-4116.
8. Chomczynski, P., Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium-thiocyanate phenol-chloroform extraction. Anal. Biochem. 162, 156-159. <https://doi.org/10.1016/0003-2697(87)90021-2>
9. Connor, T. B., Roberts, A. B., Sporn, M. B., Danielpour, D., Dart, L. L., Michels, R. G. (1989) Correlation of fibrosis and transforming growth factor-β type 2 levels in the eye. J. Clin. Invest. 83, 1661-1666. <https://doi.org/10.1172/JCI114065>
10. Cordeiro, M. F. (2002) Beyond Mitomycin: TGF-β and wound healing. Prog. Retin. Eye Res. 21, 75-89. <https://doi.org/10.1016/S1350-9462(01)00021-0>
11. Cordeiro, M. F. (2003) Role of transforming growth factor β in conjunctival scarring. Clin. Sci. (Lond.) 104, 181-187. <https://doi.org/10.1042/cs1040181>
12. Derynck, R., Jarrett, J. A., Chen, E. Y., Eaton, D. H., Bell, J. R., Assoian, R. K., Roberts, A. B., Sporn, M. B., Goeddel, D. V. (1985) Human transforming growth factor-β complementary DNA sequence and expression in normal and transformed cells. Nature 316, 701-705. <https://doi.org/10.1038/316701a0>
13. Diehn, J. J., Diehn, M., Marmor, M. F., Brown, P. O. (2005) Differential gene expression in anatomical compartments of the human eye. Genome Biol. 6, R 74. <https://doi.org/10.1186/gb-2005-6-9-r74>
14. Elliott, R. L., Blobe, G. C. (2005) Role of transforming growth factor β in human cancer. J. Clin. Oncol. 23, 2078-2093. <https://doi.org/10.1200/JCO.2005.02.047>
15. Frank, S., Madlener, M., Werner, S. (1996) Transforming growth factors β1, β2, and β3 and their receptors are differentially regulated during normal and impaired wound healing. J. Biol. Chem. 271, 10188-10193. <https://doi.org/10.1074/jbc.271.17.10188>
16. Hales, A. M., Chamberlain, C. G., McAvoy, J. W. (1995) Cataract induction in lenses cultured with transforming growth factor-β. Invest. Ophthalmol. Vis. Sci. 36, 1709-1713.
17. Hayashida-Hibino, S., Watanabe, H. (2001) The effect of TGF-β1 on differential gene expression profiles in human corneal epithelium studied by cDNA expression array. Invest. Ophthalmol. Vis. Sci. 42, 1691-1697.
18. Honma, Y., Nishida, K., Sotozono, C., Kinoshita, S. (1997) Effect of transforming growth factor-β1 and β2 on in vitro rabbit corneal epithelial cell proliferation promoted by epidermal growth factor, keratinocyte growth factor, or hepatocyte growth factor. Exp. Eye Res. 65, 391-396. <https://doi.org/10.1006/exer.1997.0338>
19. Jakowlew, S. B., Dillard, P. J., Sporn, M. B., Roberts, A. B. (1988) Complementary deoxyribonucleic acid cloning of an mRNA encoding transforming growth factor-β 4 from chicken embryo chondrocytes. Mol. Endocrinol. 2, 1186-1195. <https://doi.org/10.1210/mend-2-12-1186>
20. Jester, J. V., Petroll, W. M., Cavanagh, H. D. (1999) Corneal stromal wound healing in refractive surgery: the role of myofibroblasts. Prog. Retin. Eye Res. 18, 311-356. <https://doi.org/10.1016/S1350-9462(98)00021-4>
21. Kawakita, T., Espana, E. M., He, H., Hornia, A., Yeh, L. K., Ouyang, J., Liu, C. Y., Tseng, S. C. (2005) Keratocan expression of murine keratocytes is maintained on amniotic membrane by down-regulating transforming growth factor-β signaling. J. Biol. Chem. 280, 27085-27092. <https://doi.org/10.1074/jbc.M409567200>
22. Kon, C. H., Occleston, N. L., Aylward, G. W., Khaw, P. T. (1999) Expression of vitreous cytokines in proliferative vitreoretinopathy: a prospective study. Invest. Ophthalmol. Vis. Sci. 40, 705-712.
23. Li, D. Q., Lee, S. B., Tseng, S. C. (1999) Differential expression and regulation of TGF-β1, TGF-β2, TGF-β3, TGF-β RI, TGF-β RII and TGF-β RIII in cultured human corneal, limbal, and conjunctival fibroblasts. Curr. Eye Res. 19, 154-161. <https://doi.org/10.1076/ceyr.19.2.154.5321>
24. Lyon, R. M., Moses, H. L. (1990) Transforming growth factors and regulation of cell proliferation. Eur. J. Biochem. 187, 467-473. <https://doi.org/10.1111/j.1432-1033.1990.tb15327.x>
25. Millan, F. A., Denhez, F., Kondaiah, P., Akhurst, R. J. (1991) Embryonic gene expression patterns of TGF β 1, β 2 and β 3 suggest different developmental functions in vivo. Development 111, 131-143. <https://doi.org/10.1242/dev.111.1.131>
26. Mita, T., Yamashita, H., Kaji, Y., Obata, H., Yamada, H., Kato, M., Hanyu, A., Suzuki, M., Tobari, I. (1998) Effect of transforming growth factor β on corneal epithelial and stromal cell function in a rat wound healing model after excimer laser keratectomy. Graefes Arch. Clin. Exp. Ophthalmol. 236, 834-843. <https://doi.org/10.1007/s004170050168>
27. Nishida, K., Sotozono, C., Adachi, W., Yamamoto, S., Yokoi, N., Kinoshita, S. (1995) Transforming growth factor-β1, β2 and β3 mRNA expression in human cornea. Curr. Eye Res. 14, 235-241. <https://doi.org/10.3109/02713689509033520>
28. Pasquale, L. R., Dorman-Pease, M. E., Lutty, G. A., Quigley, H. A., Jampel, H. D. (1993) Immunolocalization of TGF-β 1, TGF-β 2, and TGF-β 3 in the anterior segment of the human eye. Invest. Ophthalmol. Vis. Sci. 34, 23-30.
29. Saika, S., Saika, S., Liu, C. Y., Azhar, M., Sanford, L. P., Doetschman, T., Gendron, R. L., Kao, C. W., Kao, W. W. (2001) TGFβ2 in corneal morphogenesis during mouse embryonic development. Dev. Biol. 240, 419-432. <https://doi.org/10.1006/dbio.2001.0480>
30. Song, Q. H., Klepeis, V. E., Nugent, M. A., Trinkaus-Randall, V. (2002) TGF-β1 regulates TGF-β1 and FGF-2 mRNA expression during fibroblast wound healing. Mol. Pathol. 55, 164-176. <https://doi.org/10.1136/mp.55.3.164>
31. Sporn, M. B., Roberts, A. B. (1992) Transforming growth factor-β: recent progress and new challenges. J. Cell. Biol. 119, 1017-1021. <https://doi.org/10.1083/jcb.119.5.1017>
32. Ten Dijke, P. T., Hansen, P., Iwata, K. K., Pieler, C., Foulkes, J. G. (1988) Identification of another member of the transforming growth factor type β gene family. Proc. Natl. Acad. Sci. USA 85, 4715-4719. <https://doi.org/10.1073/pnas.85.13.4715>
33. Thompson, H. G., Mih, J. D., Krasieva, T. B., Tromberg, B. J., George, S. C. (2006) Epithelial-derived TGF-β2 modulates basal and wound-healing subepithelial matrix homeostasis. Am. J. Physiol. Lung Cell Mol. Physiol. 291, L1277-1285. <https://doi.org/10.1152/ajplung.00057.2006>
34. Tricarico, C., Pinzani, P., Bianchi, S., Paglierani, M., Distante, V., Pazzagli, M., Bustin, S. A., Orlando, C (2002) Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal. Biochem. 309, 293-300. <https://doi.org/10.1016/S0003-2697(02)00311-1>
35. Tuli, S. S., Liu, R., Chen, C., Blalock, T. D., Goldsein, M., Schultz, G. S. (2006) Immunohistochemical localization of EGF, TGF-α, TGF-β, and their receptors in rat corneas during healing of excimer laser ablation. Curr. Eye Res. 31, 709-719. <https://doi.org/10.1080/02713680600837390>
36. Ye, P., Nadkarni, M. A., Hunter, N. (2006) Regulation of E-cadherin and TGF-β3 expression by CD24 in cultured oral epithelial cells Biochem. Biophys. Res. Commun. 349, 229-235. <https://doi.org/10.1016/j.bbrc.2006.08.033>
37. Zieske, J. D., Hutcheon, A. E., Guo, X., Chung, E. H., Joyce, N. C. (2001) TGF-β receptor types I and II are differentially expressed during corneal epithelial wound repair. Invest. Ophthalmol. Vis. Sci. 42, 1465-1471.
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive