Fol. Biol. 2008, 54, 65-70
https://doi.org/10.14712/fb2008054020065
Nitric Oxide Induces Gene Expression of Jumonji and Retinoblastoma 2 Protein while Reducing Expression of Atrial Natriuretic Peptide Precursor Type B in Cardiomyocytes
References
1. , P., Tran, T., Webster, K. A., Bishopric, N. H. (2004) Nitric oxide and promotion of cardiac myocyte apoptosis. Mol. Cell. Biochem. 263, 35-53.
<https://doi.org/10.1023/B:MCBI.0000041847.63338.b8>
2. , D., Ronne, H. (2000) Evidence of domain swapping within the jumonji family of transcription factors. Trends Biochem. Sci. 25, 274-276.
<https://doi.org/10.1016/S0968-0004(00)01593-0>
3. , D., Kolb-Bachofen, V., Zipfel, P. F., Skerka, C., Carlberg, C., Kroncke, K. D. (1999) Zinc finger transcription factors as molecular targets for nitric oxide-mediated immunosuppression: inhibition of IL-2 gene expression in murine lymphocytes. Mol. Med. 5, 721-730.
<https://doi.org/10.1007/BF03402096>
4. , S. C., Richardson, H., Ferris, W. F., Butler, C. S., Macfarlane, W. M. (2007) Nitric oxide stimulates insulin gene transcription in pancreatic β-cells. Biochem. Biophys. Res. Commun. 353, 1011-1016.
<https://doi.org/10.1016/j.bbrc.2006.12.127>
5. , M. V., Yang, X.-M., Downey, J. M. (2006) Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct-sparing strategies. Cardiovasc. Res. 70, 231-239.
<https://doi.org/10.1016/j.cardiores.2005.10.021>
6. , S. M., Duchen, M. R. (2006) Effects of NO on mitochondrial function in cardiomyocytes: Patho physiological relevance. Cardiovasc. Res. 71, 10-21.
<https://doi.org/10.1016/j.cardiores.2006.01.019>
7. , A. R., Helin, K., Dembski, M. S., Dyson, N., Harlow, E., Vuocolo, G. A., Hanobik, M. G., Haskell, K. M., Oliff, A., Defeo-Jones, D., Jones, R. E. (1993) Characterization of the retinoblastoma binding proteins RBP1 and RBP2. Oncogene 8, 3149-3156.
8. , Q., Lu, X., Jones, D. L., Shen, J., Arnold, J. M. (2001) Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 104, 700-704.
<https://doi.org/10.1161/hc3201.092284>
9. , J. M., Stamler, J. S. (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J. Clin. Invest. 115, 509-517.
<https://doi.org/10.1172/JCI200524459>
10. , L. R., Amende, M., Gurok, U., Moser, B., Gimmel, V., Tzschach, A., Janecke, A. R., Tariverdian, G., Chelly, J., Fryns, J.-P., Van Esch, H., Kleefstra, T., Hamel, B., Moraine, C., Gecz, J., Turner, G., Reinhardt, R., Kalscheuer, V. M., Ropers, H.-H., Lenzner, S. (2005) Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am. J. Hum. Genet. 76, 227-236.
<https://doi.org/10.1086/427563>
11. , S. P., Bolli, R. (2006) The ubiquitous role of nitric oxide in cardioprotection. J. Mol. Cell. Cardiol. 40, 16-23.
<https://doi.org/10.1016/j.yjmcc.2005.09.011>
12. , J., Kim, T. G., Lyons, G. E., Kim, H. R., Lee, Y. (2005) Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. J. Biol. Chem. 280, 30916-30923.
<https://doi.org/10.1074/jbc.M414482200>
13. , T. G., Kraus, J. C., Chen, J., Lee, Y. (2003) JUMONJI, a critical factor for cardiac development, functions as a transcriptional repressor. J. Biol. Chem. 278, 42247-42255.
<https://doi.org/10.1074/jbc.M307386200>
14. , T. G., Chen, J., Sadoshima, J., Lee, Y. (2004) Jumonji represses atrial natriuretic factor gene expression by inhibiting transcriptional activities of cardiac transcription factors. Mol. Cell. Biol. 24, 10151-10160.
<https://doi.org/10.1128/MCB.24.23.10151-10160.2004>
15. , H., Weisz, A., Kurashima, Y., Hashimoto, K., Ogura, T., D’Acquisto, F., Addeo, R., Makuuchi, M., Esumi, H. (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95, 189-197.
<https://doi.org/10.1182/blood.V95.1.189>
16. , J. Y., Klassen, S. S., Rabkin, S. W. (2005) Ceramide activates a mitochondrial p38 mitogen-activated protein kinase: a potential mechanism for loss of mitochondrial transmembrane potential and apoptosis. Mol. Cell. Biochem. 278, 39-51.
<https://doi.org/10.1007/s11010-005-1979-6>
17. , J. Y., Rabkin, S. W. (2000) Angiotensin II does not induce apoptosis but rather prevents apoptosis in cardiomyocytes. Peptides 21, 1237-1247.
<https://doi.org/10.1016/S0196-9781(00)00265-5>
18. , R., Yoder, S. J., Mane, S., Loughran, T. P., Jr. (2002) Microarray results: how accurate are they? BMC Bioinformatics 3, 22.
<https://doi.org/10.1186/1471-2105-3-22>
19. , Y., Song, A. J., Baker, R., Micales, B., Conway, S. J., Lyons, G. E. (2000) Jumonji, a nuclear protein that is necessary for normal heart development. Circ. Res. 86, 932-938.
<https://doi.org/10.1161/01.RES.86.9.932>
20. , L., Zhang, J., Block, E. R., Patel, J. M. (2004) Nitric oxide-modulated marker gene expression of signal transduction pathways in lung endothelial cells. Nitric Oxide 11, 290-297.
<https://doi.org/10.1016/j.niox.2004.10.007>
21. , P. B., Pelat, M., Belge, C., Balligand, J. L. (2005) Regulation of the mammalian heart function by nitric oxide. Comp. Biochem. Physiol. Part A, Mol. Integr. Physiol. 142, 144-150.
<https://doi.org/10.1016/j.cbpb.2005.05.048>
22. , J., Kitajima, K., Kojima, M., Kondo, S., Takeuchi, T. (1997) Organogenesis of the liver, thymus and spleen is affected in jumonji mutant mice. Mechan. Dev. 66, 27-37.
<https://doi.org/10.1016/S0925-4773(97)00082-8>
23. , R. B., Suhasini, M., Idriss, S., Meinkoth, J. L., Boss, G. R. (1995) Nitric oxide and cGMP analogs activate transcription from AP-1-responsive promoters in mammalian cells. FASEB J. 9, 552-558.
<https://doi.org/10.1096/fasebj.9.7.7737465>
24. , S. W., Klassen, S. S. (2007) Nitric oxide differentially regulates the gene expression of caspase genes but not some autophagic genes. Nitric Oxide 16, 339-347.
<https://doi.org/10.1016/j.niox.2006.10.007>
25. , S. W., Kong, J. Y. (2000) Nitroprusside induces cardiomyocyte death: interaction with hydrogen peroxide. Am. J. Physiol. Heart Circ. Physiol. 279, H3089-3100.
<https://doi.org/10.1152/ajpheart.2000.279.6.H3089>
26. , M., Kojima, M., Nakajima, K., Suzuki-Migishima, R., Takeuchi, T. (2007) Functions of a jumonji-cyclin D1 pathway in the coordination of cell cycle exit and migration during neurogenesis in the mouse hindbrain. Dev. Biol. 303, 549-560.
<https://doi.org/10.1016/j.ydbio.2006.11.031>
27. , T., Yamazaki, Y., Katoh-Fukui, Y., Tsuchiya, R., Kondo, S., Motoyama, J., Higashinakagawa, T. (1995) Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev. 9, 1211-1222.
<https://doi.org/10.1101/gad.9.10.1211>
28. , S., Zhang, J., Theel, S., Barb, J. J., Munson, P. J., Danner, R. L. (2006) Nitric oxide activation of Erk1/2 regulates the stability and translation of mRNA transcripts containing CU-rich elements. Nucleic Acids Res. 34, 3044-3056.
<https://doi.org/10.1093/nar/gkl386>
29. , J., Wang, S., Wesley, R. A., Danner, R. L. (2003) Adjacent sequence controls the response polarity of nitric oxide-sensitive Sp factor binding sites. J. Biol. Chem. 278, 29192-29200.
<https://doi.org/10.1074/jbc.M213043200>
