Fol. Biol. 2008, 54, 65-70

https://doi.org/10.14712/fb2008054020065

Nitric Oxide Induces Gene Expression of Jumonji and Retinoblastoma 2 Protein while Reducing Expression of Atrial Natriuretic Peptide Precursor Type B in Cardiomyocytes

S. S. Klassen, Simon W. Rabkin

Department of Medicine, University of British Columbia, Vancouver, B.C., Canada

Received January 2008
Accepted March 2008

References

1. Andreka, P., Tran, T., Webster, K. A., Bishopric, N. H. (2004) Nitric oxide and promotion of cardiac myocyte apoptosis. Mol. Cell. Biochem. 263, 35-53. <https://doi.org/10.1023/B:MCBI.0000041847.63338.b8>
2. Balciunas, D., Ronne, H. (2000) Evidence of domain swapping within the jumonji family of transcription factors. Trends Biochem. Sci. 25, 274-276. <https://doi.org/10.1016/S0968-0004(00)01593-0>
3. Berendji, D., Kolb-Bachofen, V., Zipfel, P. F., Skerka, C., Carlberg, C., Kroncke, K. D. (1999) Zinc finger transcription factors as molecular targets for nitric oxide-mediated immunosuppression: inhibition of IL-2 gene expression in murine lymphocytes. Mol. Med. 5, 721-730. <https://doi.org/10.1007/BF03402096>
4. Campbell, S. C., Richardson, H., Ferris, W. F., Butler, C. S., Macfarlane, W. M. (2007) Nitric oxide stimulates insulin gene transcription in pancreatic β-cells. Biochem. Biophys. Res. Commun. 353, 1011-1016. <https://doi.org/10.1016/j.bbrc.2006.12.127>
5. Cohen, M. V., Yang, X.-M., Downey, J. M. (2006) Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct-sparing strategies. Cardiovasc. Res. 70, 231-239. <https://doi.org/10.1016/j.cardiores.2005.10.021>
6. Davidson, S. M., Duchen, M. R. (2006) Effects of NO on mitochondrial function in cardiomyocytes: Patho physiological relevance. Cardiovasc. Res. 71, 10-21. <https://doi.org/10.1016/j.cardiores.2006.01.019>
7. Fattaey, A. R., Helin, K., Dembski, M. S., Dyson, N., Harlow, E., Vuocolo, G. A., Hanobik, M. G., Haskell, K. M., Oliff, A., Defeo-Jones, D., Jones, R. E. (1993) Characterization of the retinoblastoma binding proteins RBP1 and RBP2. Oncogene 8, 3149-3156.
8. Feng, Q., Lu, X., Jones, D. L., Shen, J., Arnold, J. M. (2001) Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 104, 700-704. <https://doi.org/10.1161/hc3201.092284>
9. Hare, J. M., Stamler, J. S. (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J. Clin. Invest. 115, 509-517. <https://doi.org/10.1172/JCI200524459>
10. Jensen, L. R., Amende, M., Gurok, U., Moser, B., Gimmel, V., Tzschach, A., Janecke, A. R., Tariverdian, G., Chelly, J., Fryns, J.-P., Van Esch, H., Kleefstra, T., Hamel, B., Moraine, C., Gecz, J., Turner, G., Reinhardt, R., Kalscheuer, V. M., Ropers, H.-H., Lenzner, S. (2005) Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am. J. Hum. Genet. 76, 227-236. <https://doi.org/10.1086/427563>
11. Jones, S. P., Bolli, R. (2006) The ubiquitous role of nitric oxide in cardioprotection. J. Mol. Cell. Cardiol. 40, 16-23. <https://doi.org/10.1016/j.yjmcc.2005.09.011>
12. Jung, J., Kim, T. G., Lyons, G. E., Kim, H. R., Lee, Y. (2005) Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. J. Biol. Chem. 280, 30916-30923. <https://doi.org/10.1074/jbc.M414482200>
13. Kim, T. G., Kraus, J. C., Chen, J., Lee, Y. (2003) JUMONJI, a critical factor for cardiac development, functions as a transcriptional repressor. J. Biol. Chem. 278, 42247-42255. <https://doi.org/10.1074/jbc.M307386200>
14. Kim, T. G., Chen, J., Sadoshima, J., Lee, Y. (2004) Jumonji represses atrial natriuretic factor gene expression by inhibiting transcriptional activities of cardiac transcription factors. Mol. Cell. Biol. 24, 10151-10160. <https://doi.org/10.1128/MCB.24.23.10151-10160.2004>
15. Kimura, H., Weisz, A., Kurashima, Y., Hashimoto, K., Ogura, T., D’Acquisto, F., Addeo, R., Makuuchi, M., Esumi, H. (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95, 189-197. <https://doi.org/10.1182/blood.V95.1.189>
16. Kong, J. Y., Klassen, S. S., Rabkin, S. W. (2005) Ceramide activates a mitochondrial p38 mitogen-activated protein kinase: a potential mechanism for loss of mitochondrial transmembrane potential and apoptosis. Mol. Cell. Biochem. 278, 39-51. <https://doi.org/10.1007/s11010-005-1979-6>
17. Kong, J. Y., Rabkin, S. W. (2000) Angiotensin II does not induce apoptosis but rather prevents apoptosis in cardiomyocytes. Peptides 21, 1237-1247. <https://doi.org/10.1016/S0196-9781(00)00265-5>
18. Kothapalli, R., Yoder, S. J., Mane, S., Loughran, T. P., Jr. (2002) Microarray results: how accurate are they? BMC Bioinformatics 3, 22. <https://doi.org/10.1186/1471-2105-3-22>
19. Lee, Y., Song, A. J., Baker, R., Micales, B., Conway, S. J., Lyons, G. E. (2000) Jumonji, a nuclear protein that is necessary for normal heart development. Circ. Res. 86, 932-938. <https://doi.org/10.1161/01.RES.86.9.932>
20. Li, L., Zhang, J., Block, E. R., Patel, J. M. (2004) Nitric oxide-modulated marker gene expression of signal transduction pathways in lung endothelial cells. Nitric Oxide 11, 290-297. <https://doi.org/10.1016/j.niox.2004.10.007>
21. Massion, P. B., Pelat, M., Belge, C., Balligand, J. L. (2005) Regulation of the mammalian heart function by nitric oxide. Comp. Biochem. Physiol. Part A, Mol. Integr. Physiol. 142, 144-150. <https://doi.org/10.1016/j.cbpb.2005.05.048>
22. Motoyama, J., Kitajima, K., Kojima, M., Kondo, S., Takeuchi, T. (1997) Organogenesis of the liver, thymus and spleen is affected in jumonji mutant mice. Mechan. Dev. 66, 27-37. <https://doi.org/10.1016/S0925-4773(97)00082-8>
23. Pilz, R. B., Suhasini, M., Idriss, S., Meinkoth, J. L., Boss, G. R. (1995) Nitric oxide and cGMP analogs activate transcription from AP-1-responsive promoters in mammalian cells. FASEB J. 9, 552-558. <https://doi.org/10.1096/fasebj.9.7.7737465>
24. Rabkin, S. W., Klassen, S. S. (2007) Nitric oxide differentially regulates the gene expression of caspase genes but not some autophagic genes. Nitric Oxide 16, 339-347. <https://doi.org/10.1016/j.niox.2006.10.007>
25. Rabkin, S. W., Kong, J. Y. (2000) Nitroprusside induces cardiomyocyte death: interaction with hydrogen peroxide. Am. J. Physiol. Heart Circ. Physiol. 279, H3089-3100. <https://doi.org/10.1152/ajpheart.2000.279.6.H3089>
26. Takahashi, M., Kojima, M., Nakajima, K., Suzuki-Migishima, R., Takeuchi, T. (2007) Functions of a jumonji-cyclin D1 pathway in the coordination of cell cycle exit and migration during neurogenesis in the mouse hindbrain. Dev. Biol. 303, 549-560. <https://doi.org/10.1016/j.ydbio.2006.11.031>
27. Takeuchi, T., Yamazaki, Y., Katoh-Fukui, Y., Tsuchiya, R., Kondo, S., Motoyama, J., Higashinakagawa, T. (1995) Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev. 9, 1211-1222. <https://doi.org/10.1101/gad.9.10.1211>
28. Wang, S., Zhang, J., Theel, S., Barb, J. J., Munson, P. J., Danner, R. L. (2006) Nitric oxide activation of Erk1/2 regulates the stability and translation of mRNA transcripts containing CU-rich elements. Nucleic Acids Res. 34, 3044-3056. <https://doi.org/10.1093/nar/gkl386>
29. Zhang, J., Wang, S., Wesley, R. A., Danner, R. L. (2003) Adjacent sequence controls the response polarity of nitric oxide-sensitive Sp factor binding sites. J. Biol. Chem. 278, 29192-29200. <https://doi.org/10.1074/jbc.M213043200>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive