Fol. Biol. 2008, 54, 109-114

https://doi.org/10.14712/fb2008054040109

In Vitro Evaluation of the Cytotoxicity and Genotoxicity of Resorcylidene Aminoguanidine in Human Diploid Cells B-HNF-1

J. Vojtaššák1, Milan Blaško, Sr.1, Ľ. Danišovič1, J. Čársky2, M. Ďuríková1, V. Repiská1, I. Waczulíková3, D. Böhmer1

1Institute of Medical Biology and Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
2Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
3Department of Nuclear Physics and Biophysics, Division of Biomedical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic

Received February 2008
Accepted August 2008

References

1. Beetstra, S., Thomas, P., Salisbury, C., Turner, J., Fenech, M. (2005) Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei. Mutat. Res. 578, 317-326. <https://doi.org/10.1016/j.mrfmmm.2005.05.012>
2. Brownlee, M., Vlassara, H., Kooney, A., Ulrich, P., Cerami, A. (1986) Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science 232, 629-632. <https://doi.org/10.1126/science.3487117>
3. Brownlee, M. (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820. <https://doi.org/10.1038/414813a>
4. Čársky, J., Lazarová, M., Beňo, A. (1978) Study of β-resorcylidene aminoguanidine I. Spectral and acid-basic properties of the onium compounds. Acta FRN Univ. Comen. Chimia 26, 89-102.
5. Chang, G. C., Hsu, S. L., Tsai, J. R., Liang, F. P., Lin, S. Y., Sheu, G. T., Chen, C. Y. (2004) Molecular mechanisms of ZD1839-induced G1-cell cycle arrest and apoptosis in human lung adenocarcinoma A549 cells. Biochem. Pharmacol. 68, 1453-1464. <https://doi.org/10.1016/j.bcp.2004.06.006>
6. Countryman, P. I., Heddle, J. A. (1976) The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutat. Res. 41, 321-332. <https://doi.org/10.1016/0027-5107(76)90105-6>
7. Director, A. E., Nath, J., Ramsey, M. J., Swiger, R. R., Tucker, J. D. (1996) Cytogenetic analysis of mice chronically fed the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5 b]pyridine. Mutat. Res. 359, 53-61. <https://doi.org/10.1016/S0165-1161(96)90009-6>
8. Fenech, M. (2000) The in vitro micronucleus technique. Mutat. Res. 455, 81-95. <https://doi.org/10.1016/S0027-5107(00)00065-8>
9. Figarola, J. L., Scott, S., Loera, S., Tessler, C., Chu, P., Weiss, L., Hardy, J., Rahbar, S. (2003) LR-90, a new advanced glycation endproduct inhibitor prevents progression of diabetic nephropathy in streptozotocin-diabetic rats. Diabetologia 46, 1140-1152.
10. Goto, K., Akenmatsu, T., Shimazu, H., Sugiyama, T. (1975) Simple differential Giemsa staining of sister chromatids after treatment with photosensitive dyes and exposure to light and the mechanism of staining. Chromosome 53, 223-230. <https://doi.org/10.1007/BF00329173>
11. Huang, J. S., Chuang, L. Y., Guh, J. Y., Chen, C. J., Yang, Y. L., Chiang, T. A., Hung, M. Y., Liao, T. N. (2005) Effect of nitric oxide-cGMP-dependent protein kinase activation on advanced glycation end-product-induced proliferation in renal fibroblasts. J. Am. Soc. Nephrol. 16, 2318-2329. <https://doi.org/10.1681/ASN.2005010030>
12. Jain, S. K., Lim, G. (2001) Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation and (Na+, K+)-ATP-ase activity reduction in high glucose-treated human erythrocytes. Free Radic. Biol. Med. 30, 232-237. <https://doi.org/10.1016/S0891-5849(00)00462-7>
13. Jakuš, V., Hrnčiarová, M., Čársky, J., Krahulec, B., Rietbrock, N. (1999) Inhibition of nonenzymatic protein glycation and lipid peroxidation by drugs with antioxidant activity. Life Sci. 65, 1991-1993. <https://doi.org/10.1016/S0024-3205(99)00462-2>
14. Kalweit, S., Utesch, D., von der Hude, W., Madle, S. (1999) Chemically induced micronucleus formation in V79 cells – comparison of three different test approaches. Mutat. Res. 439, 183-190. <https://doi.org/10.1016/S1383-5718(98)00191-0>
15. Khalifah, R. G., Baynes, J. W., Hudson, B. G. (1999) Amadorius: Novel post-Amadori inhibitors of advanced glycation reactions. Biochem. Biophys. Res. Commun. 257, 251-258. <https://doi.org/10.1006/bbrc.1999.0371>
16. Liptáková, A., Čársky, J., Uličná, O., Vancová, O., Božek, P., Ďuračková, Z. (2002) Influence of β-resorcylidene aminoguanidine on selected metabolic parameters and antioxidant status of rats with diabetes mellitus. Physiol. Res. 51, 277-284. <https://doi.org/10.33549/physiolres.930197>
17. Meintieres, S., Biola, A., Pallardy, M., Marzin, D. (2003) Using CTLL-2 and CTLL-2 bcl2 cells to avoid interference by apoptosis in the in vitro micronucleus test. Environ. Mol. Mutagen. 41, 14-27. <https://doi.org/10.1002/em.10126>
18. Metz, T. O., Alderson, N. L., Thorpe, S. R., Baynes, J. W. (2003) Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications. Arch. Biochem. Biophys. 419, 41-49. <https://doi.org/10.1016/j.abb.2003.08.021>
19. Miyoshi, H., Taguchi, T., Sugiura, M, Takeuchi, M., Yanagisawa, K., Watanabe, Y., Miwa, I., Makita, Z., Koike, T. (2002) Aminoguanidine pyridoxal adduct is superior to aminoguanidine for preventing diabetic nephropathy in mice. Horm. Metab. Res. 34, 371-377. <https://doi.org/10.1055/s-2002-33478>
20. Onuska, K. D., Lahitova, N., Čársky, J. (1996) Antimutagenic and bacteriostatic activities of Schiff-base compounds derived from aminoguanidine, semicarbasone, and copper/ II/-coordination complex. Toxicol. Environ. Chem. 57, 163-170. <https://doi.org/10.1080/02772249609358385>
21. Ossewaarde, J. M., De Vries, A., Bestebroer, T., Angulo, A. F. (1996) Application of a mycoplasma group-specific PCR for monitoring decontamination of mycoplasma-infected Chlamydia sp. strains. Appl. Environ. Microbiol. 62, 328-331. <https://doi.org/10.1128/aem.62.2.328-331.1996>
22. Rahbar, S., Yernini, K. K., Scott, S., Gonzales, N., Lalezari, I. (1999) Novel inhibitors of advanced glycation endproducts. Biochem. Biophys. Res. Commun. 262, 651-656. <https://doi.org/10.1006/bbrc.1999.1275>
23. Skamarauskas, J. T., McKay, A. G., Hunt, J. V. (1996) Aminoguanidine and its pro-oxidant effect on an experimental model of protein glycation. Free Rad. Biol. Med. 21, 801-812. <https://doi.org/10.1016/0891-5849(96)00183-9>
24. Strober, W. (1991) Trypan blue exclusion test for cell viability. In: Coligan J. E., Kruisbeek A. M., Marguiles D. H., Shevach E. M., Strober W. (eds.). Current Protocols in Immunology. Wiley, New York, pp. 3-4.
25. Sugyiama, T., Miyamoto, K., Katagiri, S. (1986) Fetal toxicity of aminoguanidine in mice and rats. J. Toxicol. Sci. 11, 189-195. <https://doi.org/10.2131/jts.11.189>
26. Taguchi, T., Sugiura, M., Hamada, Y., Miwa, I. (1998) In vivo formation of a Schiff base of aminoguanidine with pyridoxal phosphate. Biochem. Pharmacol. 55, 1667-1671. <https://doi.org/10.1016/S0006-2952(98)00010-0>
27. Taguchi, T., Sugiura, M., Hamada, Y., Miwa, I. (1999) Inhibition of advanced protein glycation by a Schiff base between aminoguanidine and pyridoxal. Eur. J. Pharmacol. 378, 283-289. <https://doi.org/10.1016/S0014-2999(99)00471-9>
28. Tipton, D. A., Lyle, B., Babich, H., Dabbous, M. K. (2003) In vitro cytotoxic and anti-inflammatory effects of myrrh oil on human gingival fibroblasts and epithelial cells. Toxicol. in Vitro 17, 301-310. <https://doi.org/10.1016/S0887-2333(03)00018-3>
29. Vojtaššák, J., Čársky, J., Böhmer, D., Braxatorisová, T., Geislerová, V., Ďuríková, M., Pagáčová, E., Repiská, V., Danišovič, Ľ., Blaško, M. (2003) Cytotoxicity test and cytogenetic analysis of effects of aminoguanidine in vitro. Methods Find. Exp. Clin. Pharmacol. 25, 11-15. <https://doi.org/10.1358/mf.2003.25.1.772542>
30. Vojtaššák, J., Čársky, J., Danišovič, Ľ., Böhmer, D., Blaško, M., Braxatorisová, T. (2006) Effect of pyridoxylidene aminoguanidine on human diploid cells B-HEF-2: in vitro cytotoxicity test and cytogenetic analysis. Toxicol. In Vitro 20, 868-873. <https://doi.org/10.1016/j.tiv.2005.12.009>
31. Waczulíková, I., Šikurová, L., Čársky, J., Štrbová, L., Krahulec, B. (2000a) Decreased fluidity of isolated erythrocyte membranes in type 1 and type 2 diabetes. Gen. Physiol. Biophys. 19, 381-392.
32. Waczulíková, I., Šikurová, L., Bryszewska, M., Rękawiecka, K., Čársky, J., Uličná, O. (2000b) Impaired erythrocyte transmembrane potential in diabetes mellitus and its possible improvement by resorcylidene aminoguanidine. Bioelectrochemistry 52, 251-256. <https://doi.org/10.1016/S0302-4598(00)00107-0>
33. Waczulíková, I., Ziegelhoffer, A., Országhová, Z., Čársky, J. (2002) Fluidising effect of resorcylidene aminoguanidine on sarcolemmal membranes in streptozotocin-diabetic rats: blunted adaptation of diabetic myocardium to Ca2+ overload. J. Physiol. Pharmacol. 53, 727-739.
34. Ziegelhöffer-Mihalovicová, B., Waczulíková, I., Sikurová, L., Styk, J., Cársky, J., Ziegelhöffer, A. (2003) Remodelling of the sarcolemma in diabetic rat hearts: the role of membrane fluidity. Mol. Cell Biochem. 249, 175-182. <https://doi.org/10.1023/A:1024703226034>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive