Fol. Biol. 2008, 54, 141-145

https://doi.org/10.14712/fb2008054050141

Expression of Endothelial and Inducible Nitric Oxide Synthase and Caspase-3 in Tonsillar Cancer, Chronic Tonsillitis and Healthy Tonsils

Petr Lukeš1, H. Pácová2, T. Kučera2, D. Veselý3, J. Martínek2, J. Astl1

1Charles University in Prague, First Faculty of Medicine, Faculty Hospital Motol, Department of Otorhinolaryngology and Head and Neck Surgery, Prague, Czech Republic
2Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Institute of Histology and Embryology, Prague, Czech Republic
3Hospital Pribram, Department of ORL, Pribram, Czech Republic

Received March 2008
Accepted October 2008

References

1. Bentz, B. G., Haines, G. K., 3rd, Lingen, M. W., Pelzer, H. J., Hanson, D. G., Radosevich, J. A. (1999) Nitric oxide synthase type 3 is increased in squamous hyperplasia, dysplasia, and squamous cell carcinoma of the head and neck. Ann. Otol. Rhinol. Laryngol. 108, 781-787. <https://doi.org/10.1177/000348949910800812>
2. Brennan, P. A., Downie, I. P., Langdon, J. D., Zaki, G. A. (1999) Emerging role of nitric oxide in cancer. Br. J. Oral Maxillofac. Surg. 37, 370-373. <https://doi.org/10.1054/bjom.1999.0201>
3. Brennan, P. A., Palacios-Callender, M., Zaki, G. A., Spedding, A. V., Langdon, J. D. (2001) Type II nitric oxide synthase (NOS2) expression correlates with lymph node status in oral squamous cell carcinoma. J. Oral Pathol. Med. 30, 129-134. <https://doi.org/10.1034/j.1600-0714.2001.300301.x>
4. Earnshaw, W. C., Martins, L. M., Kaufmann, S. H. (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424. <https://doi.org/10.1146/annurev.biochem.68.1.383>
5. Folkman, J. (1990) What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82, 4-6. <https://doi.org/10.1093/jnci/82.1.4>
6. Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27-31. <https://doi.org/10.1038/nm0195-27>
7. Gallo, O., Masini, E., Morbidelli, L., Franchi, A., Fini-Storchi, I., Vergari, W. A., Ziche, M. (1998) Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J. Natl. Cancer Inst. 90, 587-596. <https://doi.org/10.1093/jnci/90.8.587>
8. Gallo, O., Fabbroni, V., Sardi, I., Magnelli, L., Boddi, V., Franchi, A. (2002) Correlation between nitric oxide and cyclooxygenase-2 pathways in head and neck squamous cell carcinomas. Biochem. Biophys. Res. Commun. 299, 517-524. <https://doi.org/10.1016/S0006-291X(02)02683-9>
9. Hickman, J. A. (2002) Apoptosis and tumourigenesis. Curr. Opin. Genet. Dev. 12, 67-72. <https://doi.org/10.1016/S0959-437X(01)00266-0>
10. Hood, J. D., Meininger, C. J., Ziche, M., Granger, H. J. (1998) VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am. J. Physiol. 274, H1054-1058.
11. Jakob, S., Corazza, N., Diamantis, E., Kappeler, A., Brunner, T. (2008) Detection of apoptosis in vivo using antibodies against caspase-induced neo-epitopes. Methods 44, 255-261. <https://doi.org/10.1016/j.ymeth.2007.11.004>
12. Kucera, T., Pacova, H., Vesely, D., Astl, J., Martinek, J. (2004) Apoptosis and cell proliferation in chronic tonsillitis and oropharyngeal carcinoma: role of nitric oxide and cytokines. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Rep. 148, 225-227. <https://doi.org/10.5507/bp.2004.045>
13. Miyahara, M., Tanuma, J., Sugihara, K., Semba, I. (2007) Tumor lymphangiogenesis correlates with lymph node metastasis and clinicopathologic parameters in oral squamous cell carcinoma. Cancer 110, 1287-1294. <https://doi.org/10.1002/cncr.22900>
14. Saikumar, P., Dong, Z., Mikhailov, V., Denton, M., Weinberg, J. M., Venkatachalam, M. A. (1999) Apoptosis: definition, mechanisms, and relevance to disease. Am. J. Med. 107, 489-506. <https://doi.org/10.1016/S0002-9343(99)00259-4>
15. Segal, M. S., Beem, E. (2001) Effect of pH, ionic charge, and osmolality on cytochrome c-mediated caspase-3 activity. Am. J. Physiol. Cell. Physiol. 281, C1196-1204. <https://doi.org/10.1152/ajpcell.2001.281.4.C1196>
16. Tewari, M., Quan, L. T., O’Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D. R., Poirier, G. G., Salvesen, G. S., Dixit, V. M. (1995) Yama/CPP32 β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81, 801-809. <https://doi.org/10.1016/0092-8674(95)90541-3>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive