Fol. Biol. 2009, 55, 1-6
https://doi.org/10.14712/fb2009055010001
Real-time PCR Analysis of the Heat-Shock Response of Acidithiobacillus ferrooxidans ATCC 23270
References
1. American Public Health Association (APHA). (1989) Standard Methods for the Examination of Water and Wastewater, 17th ed., J. Am. Public Health Assoc., Washington, D.C.
2. 2000) The heat shock res- ponse of Escherichia coli. Int. J. Food Microbiol. 55, 3-9.
< , F., Tomoyasu, T., Bukau, B. (https://doi.org/10.1016/S0168-1605(00)00206-3>
3. 1978) Bacterial leaching. CRC Crit. Rev. Microbiol. 6, 207-261.
< , C. L. (https://doi.org/10.3109/10408417809090623>
4. 2004) WebLogo: A sequence logo generator. Genome Res. 14, 1188-1190.
< , G. E., Hon, G., Chandonia, J. M., Brenner, S. E. (https://doi.org/10.1101/gr.849004>
5. 1990) Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl. Environ. Microbiol. 56, 2922-2923.
< , E., Huber, H., Stetter, K. O. (https://doi.org/10.1128/aem.56.9.2922-2923.1990>
6. 2004) Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J. Bacteriol. 186, 7796-7803.
< , H., Wang, Y., Liu, X., Yan, T., Wu, L., Alm, E., Arkin, A., Thompson, D. K., Zhou, J. (https://doi.org/10.1128/JB.186.22.7796-7803.2004>
7. 1996) Proteases and their targets in Escherichia coli. Annu. Rev. Genet. 30, 465-506.
< , S. (https://doi.org/10.1146/annurev.genet.30.1.465>
8. 2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J. Mol. Biol. 296, 1205-1214.
< , J. D., Estep, P. W., Tavazoie, S., Church, G. M. (https://doi.org/10.1006/jmbi.2000.3519>
9. 1994) The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol. Lett. 108, 103-120.
< , L. G., Ferroni, G. D. (https://doi.org/10.1111/j.1574-6976.1994.tb00082.x>
10. 2004) Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii. Arch. Microbiol. 181, 215-230.
< , P., Vissers, J. P., Rouault, A., Boyaval, P., Jan, G. (https://doi.org/10.1007/s00203-003-0646-0>
11. 1995) Stress-induced transcriptional activation. Microbiol. Rev. 59, 506-531.
< , W. H., De Kruijff, A. J. J. (https://doi.org/10.1128/mr.59.3.506-531.1995>
12. 2005) Real-time PCR for mRNA quantitation. BioTechniques 39, 75-85.
, L. W., Juan, F. M. (
13. 1991) Proper and improper folding of proteins in the cellular environment. Annu. Rev. Microbiol. 45, 607-635.
< , B., Anderson, S. (https://doi.org/10.1146/annurev.mi.45.100191.003135>
14. 1991) Growth of Thiobacillus ferrooxidans on formic acid. Appl. Environ. Microbiol. 5, 2057-2062.
< , J. T., Meijer, W. M., Hazeu, W., van Dijken, J. P., Bos, P., Kuenen, J. G. (https://doi.org/10.1128/aem.57.7.2057-2062.1991>
15. 2002) Heavy metal mining using microbes. Annu. Rev. Microbiol. 56, 65-91.
< , D. E. (https://doi.org/10.1146/annurev.micro.56.012302.161052>
16. 1999) Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res. 27, 3821-3835.
< , C. S., Glasner, J. D., Mau, R., Jin, H., Blattner. F. R. (https://doi.org/10.1093/nar/27.19.3821>
17. 2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanism of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 63, 239-248.
< , T., Gehrke, T., Kinzler, K., Sand, W. (https://doi.org/10.1007/s00253-003-1448-7>
18. 1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16, 939-945.
< , F. P., Hughes, J. D., Estep, P. W., Church, G. M. (https://doi.org/10.1038/nbt1098-939>
19. 1990) Sequence logos: A new way to display consensus sequences. Nucleic Acids Res. 18, 6097-6100.
< , T. D., Stephens, R. M. (https://doi.org/10.1093/nar/18.20.6097>
20. 2003) Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J. Bacteriol. 185, 2009-2016.
< , A. (https://doi.org/10.1128/JB.185.6.2009-2016.2003>
21. 1987) The heat shock response of Escherichia coli is regulated by changes in the concentration of σ32. Nature 329, 348-351.
< , D. B., Walter, W. A., Gross, C. A. (https://doi.org/10.1038/329348a0>
22. 2003) Gibbs recursive sampler: finding transcription factor binding sites. Nucleic Acids Res. 31, 3580-3585.
< , W., Rouchka, E. C., Lawrence, C. E. (https://doi.org/10.1093/nar/gkg608>
23. Tuovinen, O. (1990) Biological fundamentals of mineral leaching processes. In: Microbial Mineral Recovery, eds. Ehrlich, H. L., Brierley, C. L., pp. 55-77, McGraw-Hill Book Co., New York, USA.
24. 1972) Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Z. Allg. Mikrobiol. 12, 311-346.
, O. H., Kelly, D. P. (
25. 1992) Identification and characterization of GroEL and DnaK homologues in Thiobacillus ferrooxidans. FEMS Microbiol. Lett. 77, 149-153.
< , P., Jerez, C. A. (https://doi.org/10.1111/j.1574-6968.1992.tb05505.x>
26. 1989) Phoneme recognition using time-delay Neural Networks. IEEE Trans. Acoust. Speech Signal Process 37, 328-339.
< , A. H., Hanazawa, T., Hinton, G. E., Shikano, K., Lang, K. J. (https://doi.org/10.1109/29.21701>
27. Yura, T., Kanemori, M., Morita, M. T. (2000) The heat shock response: regulation and function. In: Bacterial Stress Responses, eds. Storz, G., Aronis, R. H., pp. 3-18, ASM Press, Washington, D.C.
28. 2006) Oxidative stress and heat-shock response in Desulfovibrio vulgaris by genome-wide transcriptomic analysis. Anton. Leeuw. 90, 41-55.
< W. W., Culley, D. E., Hogan, M., Vitiritti, L., Brockman, F. J. (https://doi.org/10.1007/s10482-006-9059-9>
29. 1988) Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor σ32. J. Bacteriol. 170, 3640-3649.
< , Y., Kusukawa, N., Erickson, J. W., Gross, C. A., Yura, T. (https://doi.org/10.1128/jb.170.8.3640-3649.1988>