Fol. Biol. 2009, 55, 11-16

https://doi.org/10.14712/fb2009055010011

Angiotensin II Receptor Blockage Prevents Diabetes-Induced Oxidative Damage in Rat Heart

Semir Ozdemir1, B. Tandogan2, N. N. Ulusu2, B. Turan3

1Akdeniz University, Faculty of Medicine, Department of Biophysics, Antalya, Turkey
2Hacettepe University, Faculty of Medicine, Department of Biochemistry, Ankara, Turkey
3Ankara University, School of Medicine, Department of Biophysics, Ankara, Turkey

Received June 2008
Accepted January 2009

References

1. Acan, N., Tezcan, E. (1989) Sheep brain glutathione reductase: Purification and general properties. FEBS Lett. 250, 72-74. <https://doi.org/10.1016/0014-5793(89)80687-8>
2. Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121-126. <https://doi.org/10.1016/S0076-6879(84)05016-3>
3. Aksoy, N., Vural, H., Sabuncu, T., Aksoy, S. (2003) Effects of melatonin on oxidative-antioxidative status of tissues in streptozotocin-induced diabetic rats. Cell Biochem. Funct. 21, 121-125. <https://doi.org/10.1002/cbf.1006>
4. Babu, P., Sabitha, K., Shyamaladevi, C. (2006) Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chem. Biol. Interact. 162, 114-120. <https://doi.org/10.1016/j.cbi.2006.04.009>
5. Bendall, J., Cave, A., Heymes, C., Gall, N., Shah, A. (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105, 293-296. <https://doi.org/10.1161/hc0302.103712>
6. Berry, C., Hamilton, C., Brosnan, M., Magill, F., Berg, G., McMurray, J., Dominiczak, A. (2000) Investigation into the sources of superoxide in human blood vessels: Angiotensin II increases superoxide production in human internal mammary arteries. Circulation 101, 2206-2212. <https://doi.org/10.1161/01.CIR.101.18.2206>
7. Betke, K., Brewer, G. J., Kirkman, H. N., Luzzato, L., Motulsky, A. G., Ramot, B., Siniscalco, M. (1967) Standardized method for G-6-PD assay of haemolysates. World Health Organ. Tech. Rep. Ser. 366, 30-32.
8. Beutler, E. (1971) Red Cell Metabolism. A Manual of Biochemical Methods. New York, Grune & Stratton.
9. Bradford, M. (1976) A rapid and sensitive method for the quan titation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. <https://doi.org/10.1016/0003-2697(76)90527-3>
10. Bukan, N., Sancak, B., Bilgihan, A., Kosova, F., Buğdayci, G., Altan, N. (2004) The effects of the sulfonylurea glyburide on glutathione peroxidase, superoxide dismutase and catalase activities in the heart tissue of streptozotocin-induced diabetic rat. Methods Find. Exp. Clin. Pharmacol. 26, 519-522. <https://doi.org/10.1358/mf.2004.26.7.863734>
11. Das, D., Maulik, N., Engelman, R (2004) Redox regulation of angiotensin II signaling in the heart. J. Cell Mol. Med. 8, 144-152. <https://doi.org/10.1111/j.1582-4934.2004.tb00270.x>
12. Fein, F., Sonnenblick, E. (1985) Diabetic cardiomyopathy. Prog. Cardiovasc. Dis. 27, 255-270. <https://doi.org/10.1016/0033-0620(85)90009-X>
13. Fiordaliso, F., Li, B., Latini, R., Sonnenblick, E., Anversa, P., Leri, A., Kajstura, J. (2000) Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. Lab. Invest. 80, 513-527. <https://doi.org/10.1038/labinvest.3780057>
14. Flack, J., Hamaty, M., Staffileno, B. (1998) Renin-angiotensin-aldosterone-kinin system influences on diabetic vascular disease and cardiomyopathy. Miner. Electrolyte Metab. 24, 412-422. <https://doi.org/10.1159/000057403>
15. Griendling, K., Ushio-Fukai, M. (2000) Reactive oxygen species as mediators of angiotensin ii signaling. Regul. Pept. 91, 21-27. <https://doi.org/10.1016/S0167-0115(00)00136-1>
16. Gumieniczek, A. (2005) Modification of cardiac oxidative stress in alloxan-induced diabetic rabbits with repaglinide treatment. Life Sci. 78, 259-263. <https://doi.org/10.1016/j.lfs.2005.04.074>
17. Gumieniczek, A., Hopkała, H., Wójtowicz, Z., Nikołajuk, J. (2002) Changes in antioxidant status of heart muscle tissue in experimental diabetes in rabbits. Acta Biochim. Pol. 49, 529-535. <https://doi.org/10.18388/abp.2002_3812>
18. Habig, W., Pabst, M., Jakoby, W. (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130-7139. <https://doi.org/10.1016/S0021-9258(19)42083-8>
19. Kakkar, R., Kalra, J., Mantha, S., Prasad, K. (1995) Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol. Cell Biochem. 151, 113-119. <https://doi.org/10.1007/BF01322333>
20. Kakkar, R., Mantha, S., Kalra, J., Prasad, K. (1996) Time course study of oxidative stress in aorta and heart of diabetic rat. Clin. Sci. (Lond.) 91, 441-448. <https://doi.org/10.1042/cs0910441>
21. Kamuren, Z., Sanders, R., Watkins, J. B. (2006) Low-carbohydrate diet and oxidative stress in diabetic and nondiabetic rats. J. Biochem. Mol. Toxicol. 20, 259-269. <https://doi.org/10.1002/jbt.20142>
22. Laursen, J., Rajagopalan, S., Galis, Z., Tarpey, M., Freeman, B., Harrison, D. (1997) Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 95, 588-593. <https://doi.org/10.1161/01.CIR.95.3.588>
23. Lu, L., Quinn, M., Sun, Y. (2004) Oxidative stress in the infarcted heart: Role of de novo angiotensin II production. Biochem. Biophys. Res. Commun. 325, 943-951. <https://doi.org/10.1016/j.bbrc.2004.10.106>
24. Malhotra, A., Reich, D., Nakouzi, A., Sanghi, V., Geenen, D., Buttrick, P. (1997) Experimental diabetes is associated with functional activation of protein kinase Cε and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Circ. Res. 81, 1027-1033. <https://doi.org/10.1161/01.RES.81.6.1027>
25. Okutan, H., Ozcelik, N., Yilmaz, H., Uz, E. (2005) Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clin. Biochem. 38, 191-196. <https://doi.org/10.1016/j.clinbiochem.2004.10.003>
26. Ozdemir, S., Ugur, M., Gürdal, H., Turan, B. (2005) Treatment with AT(1) receptor blocker restores diabetes-induced alterations in intracellular Ca(2+) transients and contractile function of rat myocardium. Arch. Biochem. Biophys. 435, 166-174. <https://doi.org/10.1016/j.abb.2004.11.027>
27. Pearse, B., Rosemeyer, M. (1975) 6-phosphogluconate dehydrogenase from human erythrocytes. Methods Enzymol. 41, 220-226. <https://doi.org/10.1016/S0076-6879(75)41051-5>
28. Rahman, M., Kimura, S., Nishiyama, A., Hitomi, H., Zhang, G., Abe, Y. (2004) Angiotensin II stimulates superoxide production via both angiotensin AT1a and AT1b receptors in mouse aorta and heart. Eur. J. Pharmacol. 485, 243-249. <https://doi.org/10.1016/j.ejphar.2003.11.074>
29. Rajagopalan, S., Kurz, S., Münzel, T., Tarpey, M., Freeman, B., Griendling, K., Harrison, D. (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97, 1916-1923. <https://doi.org/10.1172/JCI118623>
30. Sechi, L., Griffin, C., Schambelan, M. (1994) The cardiac renin-angiotensin system in STZ-induced diabetes. Diabetes 43, 1180-1184. <https://doi.org/10.2337/diab.43.10.1180>
31. Shirpoor, A., Salami, S., Khadem-Ansari, M., Ilkhanizadeh, B., Pakdel, F., Khademvatani, K. (2008) Cardioprotective effect of vitamin E: Rescues of diabetes-induced cardiac malfunction, oxidative stress, and apoptosis in rat. J. Diabetes Complications [Epub ahead of print].
32. Strother, R., Thomas, T., Otsyula, M., Sanders, R., Watkins, J. B. (2001) Characterization of oxidative stress in various tissues of diabetic and galactose-fed rats. Int. J. Exp. Diabetes Res. 2, 211-216.
33. Sugawara, T., Kinouchi, H., Oda, M., Shoji, H., Omae, T., Mizoi, K. (2005) Candesartan reduces superoxide production after global cerebral ischemia. Neuroreport 16, 325-328. <https://doi.org/10.1097/00001756-200503150-00004>
34. Tsutsui, H., Matsushima, S., Kinugawa, S., Ide, T., Inoue, N., Ohta, Y., Yokota, T., Hamaguchi, S., Sunagawa, K. (2007) Angiotensin II type 1 receptor blocker attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Hypertens Res. 30, 439-449. <https://doi.org/10.1291/hypres.30.439>
35. Ulusu, N., Turan, B. (2005) Beneficial effects of selenium on some enzymes of diabetic rat heart. Biol. Trace Elem. Res. 103, 207-216. <https://doi.org/10.1385/BTER:103:3:207>
36. Yadav, P., Sarkar, S., Bhatnagar, D. (1997) Action of capparis decidua against alloxan-induced oxidative stress and diabetes in rat tissues. Pharmacol. Res. 36, 221-228. <https://doi.org/10.1006/phrs.1997.0222>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive