Fol. Biol. 2009, 55, 11-16
https://doi.org/10.14712/fb2009055010011
Angiotensin II Receptor Blockage Prevents Diabetes-Induced Oxidative Damage in Rat Heart
References
1. , N., Tezcan, E. (1989) Sheep brain glutathione reductase: Purification and general properties. FEBS Lett. 250, 72-74.
<https://doi.org/10.1016/0014-5793(89)80687-8>
2. , H. (1984) Catalase in vitro. Methods Enzymol. 105, 121-126.
<https://doi.org/10.1016/S0076-6879(84)05016-3>
3. , N., Vural, H., Sabuncu, T., Aksoy, S. (2003) Effects of melatonin on oxidative-antioxidative status of tissues in streptozotocin-induced diabetic rats. Cell Biochem. Funct. 21, 121-125.
<https://doi.org/10.1002/cbf.1006>
4. , P., Sabitha, K., Shyamaladevi, C. (2006) Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chem. Biol. Interact. 162, 114-120.
<https://doi.org/10.1016/j.cbi.2006.04.009>
5. , J., Cave, A., Heymes, C., Gall, N., Shah, A. (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105, 293-296.
<https://doi.org/10.1161/hc0302.103712>
6. , C., Hamilton, C., Brosnan, M., Magill, F., Berg, G., McMurray, J., Dominiczak, A. (2000) Investigation into the sources of superoxide in human blood vessels: Angiotensin II increases superoxide production in human internal mammary arteries. Circulation 101, 2206-2212.
<https://doi.org/10.1161/01.CIR.101.18.2206>
7. , K., Brewer, G. J., Kirkman, H. N., Luzzato, L., Motulsky, A. G., Ramot, B., Siniscalco, M. (1967) Standardized method for G-6-PD assay of haemolysates. World Health Organ. Tech. Rep. Ser. 366, 30-32.
8. Beutler, E. (1971) Red Cell Metabolism. A Manual of Biochemical Methods. New York, Grune & Stratton.
9. , M. (1976) A rapid and sensitive method for the quan titation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
<https://doi.org/10.1016/0003-2697(76)90527-3>
10. , N., Sancak, B., Bilgihan, A., Kosova, F., Buğdayci, G., Altan, N. (2004) The effects of the sulfonylurea glyburide on glutathione peroxidase, superoxide dismutase and catalase activities in the heart tissue of streptozotocin-induced diabetic rat. Methods Find. Exp. Clin. Pharmacol. 26, 519-522.
<https://doi.org/10.1358/mf.2004.26.7.863734>
11. , D., Maulik, N., Engelman, R (2004) Redox regulation of angiotensin II signaling in the heart. J. Cell Mol. Med. 8, 144-152.
<https://doi.org/10.1111/j.1582-4934.2004.tb00270.x>
12. , F., Sonnenblick, E. (1985) Diabetic cardiomyopathy. Prog. Cardiovasc. Dis. 27, 255-270.
<https://doi.org/10.1016/0033-0620(85)90009-X>
13. , F., Li, B., Latini, R., Sonnenblick, E., Anversa, P., Leri, A., Kajstura, J. (2000) Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. Lab. Invest. 80, 513-527.
<https://doi.org/10.1038/labinvest.3780057>
14. , J., Hamaty, M., Staffileno, B. (1998) Renin-angiotensin-aldosterone-kinin system influences on diabetic vascular disease and cardiomyopathy. Miner. Electrolyte Metab. 24, 412-422.
<https://doi.org/10.1159/000057403>
15. , K., Ushio-Fukai, M. (2000) Reactive oxygen species as mediators of angiotensin ii signaling. Regul. Pept. 91, 21-27.
<https://doi.org/10.1016/S0167-0115(00)00136-1>
16. , A. (2005) Modification of cardiac oxidative stress in alloxan-induced diabetic rabbits with repaglinide treatment. Life Sci. 78, 259-263.
<https://doi.org/10.1016/j.lfs.2005.04.074>
17. , A., Hopkała, H., Wójtowicz, Z., Nikołajuk, J. (2002) Changes in antioxidant status of heart muscle tissue in experimental diabetes in rabbits. Acta Biochim. Pol. 49, 529-535.
<https://doi.org/10.18388/abp.2002_3812>
18. , W., Pabst, M., Jakoby, W. (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130-7139.
<https://doi.org/10.1016/S0021-9258(19)42083-8>
19. , R., Kalra, J., Mantha, S., Prasad, K. (1995) Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol. Cell Biochem. 151, 113-119.
<https://doi.org/10.1007/BF01322333>
20. , R., Mantha, S., Kalra, J., Prasad, K. (1996) Time course study of oxidative stress in aorta and heart of diabetic rat. Clin. Sci. (Lond.) 91, 441-448.
<https://doi.org/10.1042/cs0910441>
21. , Z., Sanders, R., Watkins, J. B. (2006) Low-carbohydrate diet and oxidative stress in diabetic and nondiabetic rats. J. Biochem. Mol. Toxicol. 20, 259-269.
<https://doi.org/10.1002/jbt.20142>
22. , J., Rajagopalan, S., Galis, Z., Tarpey, M., Freeman, B., Harrison, D. (1997) Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 95, 588-593.
<https://doi.org/10.1161/01.CIR.95.3.588>
23. , L., Quinn, M., Sun, Y. (2004) Oxidative stress in the infarcted heart: Role of de novo angiotensin II production. Biochem. Biophys. Res. Commun. 325, 943-951.
<https://doi.org/10.1016/j.bbrc.2004.10.106>
24. , A., Reich, D., Nakouzi, A., Sanghi, V., Geenen, D., Buttrick, P. (1997) Experimental diabetes is associated with functional activation of protein kinase Cε and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Circ. Res. 81, 1027-1033.
<https://doi.org/10.1161/01.RES.81.6.1027>
25. , H., Ozcelik, N., Yilmaz, H., Uz, E. (2005) Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clin. Biochem. 38, 191-196.
<https://doi.org/10.1016/j.clinbiochem.2004.10.003>
26. , S., Ugur, M., Gürdal, H., Turan, B. (2005) Treatment with AT(1) receptor blocker restores diabetes-induced alterations in intracellular Ca(2+) transients and contractile function of rat myocardium. Arch. Biochem. Biophys. 435, 166-174.
<https://doi.org/10.1016/j.abb.2004.11.027>
27. , B., Rosemeyer, M. (1975) 6-phosphogluconate dehydrogenase from human erythrocytes. Methods Enzymol. 41, 220-226.
<https://doi.org/10.1016/S0076-6879(75)41051-5>
28. , M., Kimura, S., Nishiyama, A., Hitomi, H., Zhang, G., Abe, Y. (2004) Angiotensin II stimulates superoxide production via both angiotensin AT1a and AT1b receptors in mouse aorta and heart. Eur. J. Pharmacol. 485, 243-249.
<https://doi.org/10.1016/j.ejphar.2003.11.074>
29. , S., Kurz, S., Münzel, T., Tarpey, M., Freeman, B., Griendling, K., Harrison, D. (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97, 1916-1923.
<https://doi.org/10.1172/JCI118623>
30. , L., Griffin, C., Schambelan, M. (1994) The cardiac renin-angiotensin system in STZ-induced diabetes. Diabetes 43, 1180-1184.
<https://doi.org/10.2337/diab.43.10.1180>
31. Shirpoor, A., Salami, S., Khadem-Ansari, M., Ilkhanizadeh, B., Pakdel, F., Khademvatani, K. (2008) Cardioprotective effect of vitamin E: Rescues of diabetes-induced cardiac malfunction, oxidative stress, and apoptosis in rat. J. Diabetes Complications [Epub ahead of print].
32. , R., Thomas, T., Otsyula, M., Sanders, R., Watkins, J. B. (2001) Characterization of oxidative stress in various tissues of diabetic and galactose-fed rats. Int. J. Exp. Diabetes Res. 2, 211-216.
33. , T., Kinouchi, H., Oda, M., Shoji, H., Omae, T., Mizoi, K. (2005) Candesartan reduces superoxide production after global cerebral ischemia. Neuroreport 16, 325-328.
<https://doi.org/10.1097/00001756-200503150-00004>
34. , H., Matsushima, S., Kinugawa, S., Ide, T., Inoue, N., Ohta, Y., Yokota, T., Hamaguchi, S., Sunagawa, K. (2007) Angiotensin II type 1 receptor blocker attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Hypertens Res. 30, 439-449.
<https://doi.org/10.1291/hypres.30.439>
35. , N., Turan, B. (2005) Beneficial effects of selenium on some enzymes of diabetic rat heart. Biol. Trace Elem. Res. 103, 207-216.
<https://doi.org/10.1385/BTER:103:3:207>
36. , P., Sarkar, S., Bhatnagar, D. (1997) Action of capparis decidua against alloxan-induced oxidative stress and diabetes in rat tissues. Pharmacol. Res. 36, 221-228.
<https://doi.org/10.1006/phrs.1997.0222>
