Fol. Biol. 2009, 55, 27-34
https://doi.org/10.14712/fb2009055010027
Mesenchymal Progenitor Cells in Red and Yellow Bone Marrow
References
1. , G., Scadden, D. (2006) The hematopoietic stem cell in its place. Nat. Immunol. 7, 333-337.
<https://doi.org/10.1038/ni1331>
2. , J., Gurevitch, O., Udalov, G. (1980) Role of bone marrow stroma in hematopoietic stem cell regulation. Exp. Hematol. 8, 770-778.
3. , B., Keating, A. (1995) Biology of bone marrow stroma. Ann. N. Y. Acad. Sci. 770, 70-78.
<https://doi.org/10.1111/j.1749-6632.1995.tb31044.x>
4. , O. (1990) The ability of induced osteo-progenitor cells to maintain and rebuild long-term ectopic osteo-hematopoietic foci in vivo. Int. J. Cell Cloning 8, 130-137.
<https://doi.org/10.1002/stem.5530080206>
5. , O., Drize, N. J., Udalov, G. A., Chertkov, J. L. (1982) The influence of hematopoiesis on the precursor cells of bone marrow stroma. Bull. Exp. Biol. Med. USSR 10, 115-117.
6. , O., Samoilina, N, Medvinsky, A., Gun, O. I. (1990) Induction of ectopic osteo-hematopoietic foci in mice on implantation of demineralized tooth matrix. Hematol. Transfusion 2, 7-12.
7. , O., Fabian, I. (1993) Ability of the hemopoietic microenvironment in the induced bone to maintain the proliferative potential of early hemopoietic precursors. Stem Cells 11, 56-61.
<https://doi.org/10.1002/stem.5530110110>
8. , O., Kurkalli, G., Prigozhina, T., Kasir, J., Gaft, A., Slavin, S. (2003) Reconstruction of cartilage, bone, and hematopoietic microenvironment with demineralized bone matrix and bone marrow cells. Stem Cells 21, 588-597.
<https://doi.org/10.1634/stemcells.21-5-588>
9. , O., Slavin, S., Feldman, A. (2007a) Conversion of red bone marrow into yellow: cause and mechanisms. Med. Hypotheses 69, 531-536.
<https://doi.org/10.1016/j.mehy.2007.01.052>
10. , O., Khitrin, S., Valitov, A., Slavia, S. (2007b) Osteoporosis of hematologic etiology. Exp. Hematol. 35, 128–136.
<https://doi.org/10.1016/j.exphem.2006.09.010>
11. , K., Kagawa, K., Awai, M., Irino, S. (1986) The role of marrow architecture and stromal cells in the recovery process of aplastic marrow of lethally irradiated rats parabiosed with healthy litter mates. Scan. Electron Microsc. 4, 1489-1499.
12. , T., Iwasaki, K. (1992) Bone marrow plays a role in bone metabolism: histomorphometry of iliac bone in postmenopausal women. Calcif. Tissue Int. 51, 348-351.
<https://doi.org/10.1007/BF00316878>
13. , J., Hayashi, K., Awai, M. (1986) Participation of bone marrow stromal cells in hemopoietic recovery of rats irradiated and then parabiosed with a non-irradiated litter mate. I. Light microscopic observations. Acta Pathol. Jpn. 36, 999-1010.
14. , A., Tavassoli, M., Crosby, W. (1971a) Factors affecting the conversion of yellow to red marrow. Blood 37, 581-586.
<https://doi.org/10.1182/blood.V37.5.581.581>
15. , A., Tavassoli, M., Crosby, W. (1971b) Origin of osteogenic precursor cells in extramedullary marrow implants. Blood 38, 569-575.
<https://doi.org/10.1182/blood.V38.5.569.569>
16. , S., Dawson, K. (1990) Red and yellow marrow in the femur: age-related changes in appear ace at MR imaging. Radiology 175, 219-223.
<https://doi.org/10.1148/radiology.175.1.2315484>
17. , Y., Yahata, T., Miyatake, H., Sato, T., Uno, T., Itoh, J., Kato, S., Ito, M., Hotta, T., Ando, K. (2006) Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 107, 1878-1887.
<https://doi.org/10.1182/blood-2005-06-2211>
18. , A., Cardenas, F., Tavassoli, M. (1980) Functional potential of ectopic marrow autotransplants. Experientia 36, 605-606.
<https://doi.org/10.1007/BF01965828>
19. , T., Reddi, A. (1983) Homology of bone-inductive proteins from human, monkey, bovine, and rat extracellular matrix. Proc. Natl. Acad. Sci. USA 80, 6591-6595.
<https://doi.org/10.1073/pnas.80.21.6591>
20. , D. (2006) The stem-cell niche as an entity of action. Nature 441, 1075-79.
<https://doi.org/10.1038/nature04957>
21. , J., Hwang, K., Winn, S., Hollinger, J. O. (1999) Bone morphogenetic proteins: an update on basic biology and clinical relevance. J. Orthop. Res. 17, 269-278.
<https://doi.org/10.1002/jor.1100170217>
22. , B. (1990) Regulation of hematopoiesis. Yale J. Biol. Med. 63, 371-380.
23. , A., Oddone, M., Dell’Acqua, A., Occhi, M., Ciccone, M. A. (1995) MRI “road-map” of normal age-related bone marrow. II. Thorax, pelvis and extremities. Pediatr. Radiol. 25, 596-606.
<https://doi.org/10.1007/BF02011826>
24. , M., Maniatis, A., Crosby, W. (1972) The effects of phenylhydrazine-induced haemolysis on the behavior of regenerating marrow stroma. Br. J. Haematol. 23, 707-711.
<https://doi.org/10.1111/j.1365-2141.1972.tb03485.x>
25. , M., Maniatis, A., Crosby, W. (1974) Induction of sustained hemopoiesis in fatty marrow. Blood 43, 33-38.
<https://doi.org/10.1182/blood.V43.1.33.33>
26. , G., Gurevitch, O., Chertkov, J. (1977) The origin of hemopoietic cells in syngeneic and semisyngeneic ectopic hemopoietic site. Bull. Exp. Biol. Med. USSR 5, 584-586.
27. , D., Kalajzic, Z., Rowe, D., Katavic, V., Lorenzo, J., Aquila, H. L. (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103, 3258-3264.
<https://doi.org/10.1182/blood-2003-11-4011>
28. , G., Zawin, J., Poznanski, A. (1994) Sequence and rate of bone marrow conversion in the femora of children as seen on MRI imaging: are accepted standards accurate? AJR 162, 1399-1406.
<https://doi.org/10.2214/ajr.162.6.8192007>
