Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2009, 55, 66-76

https://doi.org/10.14712/fb2009055020066

Effect of Culture Substrate and Culture Conditions on Lens Epithelial Cell Proliferation and α-smooth Muscle Actin Expression

Gabriela Mahelková1,2, L. Bačáková3, J. Korynta4, L. Vajner5, R. Vytásek6

1Charles University in Prague, 2nd Faculty of Medicine, Clinic of Ophthalmology, Prague, Czech Republic
2Charles University in Prague, 2nd Faculty of Medicine, Institute of Physiology, Prague, Czech Republic
3Academy of Sciences, Institute of Physiology, Department of Growth and Differentiation of Cell Populations, Prague, Czech Republic
4University of Edinburgh, Princess Alexandra Eye Pavillion, Edinburgh, Scottland, United Kingdom
5Charles University in Prague, 2nd Faculty of Medicine, Institute of Histology and Embryology, Prague, Czech Republic
6Charles University in Prague, 2nd Faculty of Medicine, Institute of Medical Chemistry and Biochemistry, Prague, Czech Republic

Received September 2008
Accepted February 2009

References

1. Aslam, T. M., Aspinall, P., Dhillon, B. (2003a) Posterior capsule morphology determinants of visual function. Graefes Ach. Clin. Exp. Ophthalmol. 241, 208-212. <https://doi.org/10.1007/s00417-003-0626-8>
2. Aslam, T. M., Devlin, H., Dhillon, B. (2003b) Use of Nd:YAG laser capsulotomy. Surv. Ophthalmol. 48, 594-612. <https://doi.org/10.1016/j.survophthal.2003.08.002>
3. Bacakova, L., Mares, V., Lisa, V. (1999) Gender-related differences in adhesion, growth and differentiation of vascular smooth muscle cells are enhanced in serumdeprived cultures. Cell Biol. Int. 23, 643-648. <https://doi.org/10.1006/cbir.1999.0417>
4. Bertelmann, E., Kojetinsky, C. (2001) Posterior capsule opacification and anterior capsule opacification. Curr. Opin. Ophthalmol. 12, 35-40. <https://doi.org/10.1097/00055735-200102000-00007>
5. de Iongh, R. U., Wederell, E., Lovicu, F. J., McAvoy, J. W. (2005) Transforming growth factor-β-induced epithelialmesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs 179, 43-55. <https://doi.org/10.1159/000084508>
6. de Jong-Hesse, Y., Kampmeier, J., Lang, G. K., Lang, G. E. (2005) Effect of extracellular matrix on proliferation and differentiation of porcine lens epithelial cells. Graefes Arch. Clin. Exp. Ophthalmol. 243, 695-700. <https://doi.org/10.1007/s00417-004-1116-3>
7. Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., Discher, D. (2004a) Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86, 617-628. <https://doi.org/10.1016/S0006-3495(04)74140-5>
8. Engler, A. J., Griffin, M. A., Sen, S., Bönnemann, C. G., Sweeney, H. L., Discher, D. E. (2004b) Myotubes differentiate optimally on substrate with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell. Biol. 166, 877-887. <https://doi.org/10.1083/jcb.200405004>
9. Greenburg, G., Hay, E. D. (1986) Cytodifferentiation and tissue phenotype change during transformation of embryonic lens epithelium to mesenchyme-like cells in vitro. Dev. Biol. 115, 363-379. <https://doi.org/10.1016/0012-1606(86)90256-3>
10. Hales, A. M., Schulz, M. W., Chamberlain, C. G., McAvoy, J. W. (1994) TGF-β 1 induces lens cells to accumulate α-smooth muscle actin, a marker for subcapsular cataracts. Curr. Eye Res. 13, 885-890. <https://doi.org/10.3109/02713689409015091>
11. Hales, A. M., Chamberlain, C. G., McAvoy, J. W. (1995) Cataract induction in lenses cultured with transforming growth factor-β. Invest. Ophthalmol. Vis. Sci. 36, 1709-1713.
12. Iwig, M., Glaesser, D. (1985) On the role of microfilaments in cell-shape-mediated growth control of lens epithelial cells. Cell Tissue Kinet. 18, 169-182.
13. Iwig, M., Ngoli, D., Glaesser, D. (1989) Autoradiographic investigations on cell shape-mediated growth regulation of lens epithelial cells in culture. Biomed. Biochim. Acta 48, 121-127.
14. Iwig, M., Glaesser, D. (1991) Cell-substratum interactions and the cytoskeleton in cell shape-mediated growth regulation of lens epithelial cells. Lens Eye Toxic. Res. 8, 281-309.
15. Kim, J. T., Lee, E. H., Chung, K. H., Kang, I. C., Lee, D. H., Joo, C. K. (2004) Transdifferentiation of cultured bovine lens epithelial cells into myofibroblast-like cells by serum modulation. Yonsei Med. J. 45, 380-391. <https://doi.org/10.3349/ymj.2004.45.3.380>
16. Kivela, T., Uusitalo, M. (1998) Structure, development and function of cytoskeletal elements in non-neuronal cells of the human eye. Prog. Retin. Eye Res. 17, 385-428. <https://doi.org/10.1016/S1350-9462(98)00001-9>
17. Kurosaka, D., Kato, K., Nagamoto, T., Negishi, K. (1995) Growth factors influence contractility and α-smooth muscle actin expression in bovine lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 36, 1701-1708.
18. Kurosaka, D., Kato, K., Nagamoto, T. (1996) Presence of α smooth muscle actin in lens epithelial cells of aphakic rabbit eyes. Br. J. Ophthalmol. 80, 906-910. <https://doi.org/10.1136/bjo.80.10.906>
19. Kurosaka, D., Kato, K., Oshima, T., Kurosaka, H., Yoshino, M., Ogata, M. (1999) Extracellular matrixes influence α-smooth muscle actin expression in cultured porcine lens epithelial cells. Curr. Eye Res. 19, 260-263. <https://doi.org/10.1076/ceyr.19.3.260.5308>
20. Lee, E. H., Joo, C. K. (1999) Role of transforming growth factor-β in transdifferentiation and fibrosis of lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 40, 2025-2032.
21. Liu, C. S., Wormstone, I. M., Duncan, G., Marcantonio, J. M., Webb, S. F., Davies, P. D. (1996) A study of human lens cell growth in vitro. A model for posterior capsule opacification. Invest. Ophthalmol. Vis. Sci. 37, 906-914.
22. Liu, J., Hales, A. M., Chamberlain, C. G., McAvoy, J. W. (1994) Induction of cataract-like changes in rat lens epithelial explants by transforming growth factor β [see comments]. Invest. Ophthalmol. Vis. Sci. 35, 388-401.
23. Lois, N., Dawson, R., McKinnon, A. D., Forrester, J. V. (2003) A new model of posterior capsule opacification in rodents. Invest. Ophthalomol. Vis. Sci. 44, 3450-3457. <https://doi.org/10.1167/iovs.02-1293>
24. Mahoney, W. M., Schwartz, S. M. (2005) Defining smooth muscle cells and smooth muscle injury. J. Clin. Invest. 115, 221-224. <https://doi.org/10.1172/JCI24272>
25. Marcantonio, J. M., Vrensen, G. F. (1999) Cell biology of posterior capsular opacification. Eye 13, (Pt 3b), 484-488. <https://doi.org/10.1038/eye.1999.126>
26. Marcantonio, J. M., Rakic, J. M., Vrensen, G. F., Duncan, G. (2000) Lens cell populations studied in human donor capsular bags with implanted intraocular lenses. Invest. Ophthalmol. Vis. Sci. 41, 1130-1141.
27. Marcantonio, J. M., Syam, P. P., Liu, C. S., Duncan, G. (2003) Epithelial transdifferentiation and cataract in the human lens. Exp. Eye Res. 77, 339-346. <https://doi.org/10.1016/S0014-4835(03)00125-8>
28. Meacock, W. R., Spalton, D. J., Stanford, M. R. (2000) Role of cytokines in the pathogenesis of posterior capsule opacification. Br. J. Ophthalmol. 84, 332-336. <https://doi.org/10.1136/bjo.84.3.332>
29. Nagamoto, T., Eguchi, G., Beebe, D. C. (2000) α-smooth muscle actin expression in cultured lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 41, 1122-1129.
30. Neil, G. A., Zimmermann, U. (1993) Electrofusion. Methods Enzymol. 220, 174-196. <https://doi.org/10.1016/0076-6879(93)20082-E>
31. Nishi, O., Nishi, K., Fujiwara, T., Shirasawa, E., Ohmoto, Y. (1996) Effects of the cytokines on the proliferation of and collagen synthesis by human cataract lens epithelial cells. Br. J. Ophthalmol. 80, 63-68. <https://doi.org/10.1136/bjo.80.1.63>
32. Nishi, O., Nishi, K., Akaishi, T., Shirasawa, E. (1997) Detection of cell adhesion molecules in lens epithelial cells of human cataracts. Invest. Ophthalmol. Vis. Sci. 38, 579-585.
33. Nishi, O. (1999) Posterior capsule opacification. Part 1: Experimental investigations. J. Cataract Refract. Surg. 25, 106-117. <https://doi.org/10.1016/S0886-3350(99)80020-0>
34. Oharazawa, H., Ibaraki, N., Lin, L. R., Reddy, V. N. (1999) The effects of extracellular matrix on cell attachment, proliferation and migration in a human lens epithelial cell line. Exp. Eye Res. 69, 603-610. <https://doi.org/10.1006/exer.1999.0723>
35. Ong, M. D., Payne, D. M., Garner, M. H. (2003) Differential protein expression in lens epithelial whole-mounts and lens epithelial cell cultures. Exp. Eye Res. 77, 35-49. <https://doi.org/10.1016/S0014-4835(03)00090-3>
36. Saika, S., Kawashima, Y., Miyamoto, T., Okada, Y., Tanaka, S. I., Ohmi, S., Minamide, A., Yamanaka, O., Ohnishi, Y., Ooshima, A., Yamanaka, A. (1998) Immunolocalization of prolyl 4-hydroxylase subunits, α-smooth muscle actin, and extracellular matrix components in human lens capsules with lens implants. Exp. Eye Res. 66, 283-294. <https://doi.org/10.1006/exer.1997.0434>
37. Sasabe, T., Kishida, K., Kiritoshi, A., Uni, A., Manabe, R. (1986) A newly established cell line of rabbit lens epithelium. Jpn. J. Ophthalmol. 30, 367-375.
38. Ursell, P. G., Spalton, D. J., Pande, M. V., Hollick, E. J., Barman, S., Boyce, J., Tilling, K. (1998) Relationship between intraocular lens biomaterials and posterior capsule opacification. J. Cataract Refract. Surg. 24, 352-360. <https://doi.org/10.1016/S0886-3350(98)80323-4>
39. Wilhelm, J., Smistik, Z., Mahelkova, G., Vytasek, R. (2007) Redox regulation of proliferation of lens epithelial cells in culture. Cell Biochem. Funct. 25, 317-321. <https://doi.org/10.1002/cbf.1390>
40. Wu, X. Y., Svoboda, K. K., Trinkaus-Randall, V. (1995) Distribution of F-actin, vinculin and integrin subunits (α 6 and β 4) in response to corneal substrata. Exp. Eye Res. 60, 445-458. <https://doi.org/10.1016/S0014-4835(05)80101-0>
41. Zelenka, P. S. (2004) Regulation of cell adhesion and migration in lens development. Int. J. Dev. Biol. 48, 857-865. <https://doi.org/10.1387/ijdb.041871pz>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive