Fol. Biol. 2009, 55, 98-106

https://doi.org/10.14712/fb2009055030098

Gene Expression Responses in Larvae of the Fleshfly Sarcophaga bullata after Immune Stimulation

A. Mášová1, R. Šindelka2, M. Kubista2, J. Kindl1, Jiří Jiráček1

1Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic
2Institute of Biotechnology, Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic

Received November 2008
Accepted February 2009

References

1. Ampasala, D. R., Zheng, S. C., Retnakaran, A., Krell, P. J., Arif, B. M., Feng, Q. L. (2004) Cloning and expression of a putative transferrin cDNA of the spruce budworm, Choristoneura fumiferana. Insect Biochem. Mol. Biol. 34, 493-500. <https://doi.org/10.1016/j.ibmb.2004.03.002>
2. Bonefeld, B. E., Elfving, B., Wegener, G. (2008) Reference genes for normalization: A study of rat brain tissue. Synapse 62, 302-309. <https://doi.org/10.1002/syn.20496>
3. Bustin, S. A., Nolan, T. (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech. 15, 155-166.
4. Chase, M. R., Raina, K., Bruno, J., Sugumaran, M. (2000) Purification, characterization and molecular cloning of prophenoloxidases from Sarcophaga bullata. Insect Biochem. Mol. Biol. 30, 953-967. <https://doi.org/10.1016/S0965-1748(00)00068-0>
5. Chung, S. O., Kubo, T., Natori, S. (1995) Molecular cloning and sequencing of arylphorin-binding protein in protein granules of the Sarcophaga fat body. Implications of a post-translational processing mechanism. J. Biol. Chem. 270, 4624-4631. <https://doi.org/10.1074/jbc.270.9.4624>
6. Ciencialova, A., Neubauerova, T., Sanda, M., Sindelka, R., Cvacka, J., Voburka, Z., Budesinsky, M., Kasicka, V., Sazelova, P., Solinova, V., Mackova, M., Koutek, B., Jiracek, J. (2008) Mapping the peptide and protein immune response in the larvae of the fleshfly Sarcophaga bullata. J. Pept. Sci. 14, 670-682. <https://doi.org/10.1002/psc.967>
7. De Gregorio E., Spellman, P. T., Rubin, G. M., Lemaitre, B. (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. USA 98, 12590-12595. <https://doi.org/10.1073/pnas.221458698>
8. Dimarcq, J. L., Hoffmann, D., Meister, M., Bulet, P., Lanot, R., Reichhart, J. M., Hoffmann, J. A. (1994) Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur. J. Biochem. 221, 201-209. <https://doi.org/10.1111/j.1432-1033.1994.tb18730.x>
9. Ferrandon, D., Imler, J. L., Hetru, C., Hoffmann, J. A. (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat. Rev. Immunol. 7, 862-874. <https://doi.org/10.1038/nri2194>
10. French, C. K., Fouts, D. L., Manning, J. E. (1981) Sequence arrangement of the rRNA genes of the dipteran Sarcophaga bullata. Nucleic Acids Res. 9, 2563-2576. <https://doi.org/10.1093/nar/9.11.2563>
11. Gomme, P. T., McCann, K. B., Bertolini, J. (2005) Transferrin: structure, function and potential therapeutic actions. Drug Discov. Today 10, 267-273. <https://doi.org/10.1016/S1359-6446(04)03333-1>
12. Hoffmann, J. A., Reichhart, J. M. (2002) Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3, 121-126. <https://doi.org/10.1038/ni0202-121>
13. Hultmark, D. (2003) Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15, 12-19. <https://doi.org/10.1016/S0952-7915(02)00005-5>
14. Irving, P., Troxler, L., Heuer, T. S., Belvin, M., Kopczynski, C., Reichhart, J. M., Hoffmann, J. A., Hetru, C. (2001) A genome-wide analysis of immune responses in Drosophila. Proc. Natl. Acad. Sci. USA 98, 15119-15124. <https://doi.org/10.1073/pnas.261573998>
15. Iwanaga, S., Lee, B. L. (2005) Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Biol. 38, 128-150.
16. Jamroz, R. C., Gasdaska, J. R., Bradfield, J. Y., Law, J. H. (1993) Transferrin in a cockroach – molecular cloning, characterization, and suppression by juvenile hormone. Proc. Natl. Acad. Sci. USA 90, 1320-1324. <https://doi.org/10.1073/pnas.90.4.1320>
17. Johansson, K. C., Metzendorf, C., Soderhall, K. (2005) Microarray analysis of immune challenged Drosophila hemocytes. Exp. Cell Res. 305, 145-155. <https://doi.org/10.1016/j.yexcr.2004.12.018>
18. Kocks, C., Maehr, R., Overkleeft, H. S., Wang, E. W., Iyer, L. K., Lennon-Dumenil, A. M., Ploegh, H. L., Kessler, B. M. (2003) Functional proteomics of the active cysteine protease content in Drosophila S2 cells. Mol. Cell. Proteomics 2, 1188-1197. <https://doi.org/10.1074/mcp.M300067-MCP200>
19. Law, J. H. (2002) Insects, oxygen, and iron. Biochem. Biophys. Res. Commun. 292, 1191-1195. <https://doi.org/10.1006/bbrc.2001.2015>
20. Lazzaro, B. P., Sackton, T. B., Clark, A. G. (2006) Genetic variation in Drosophila melanogaster resistance to infection: A comparison across bacteria. Genetics 174, 1539-1554. <https://doi.org/10.1534/genetics.105.054593>
21. Leclerc, V., Reichhart, J. M. (2004) The immune response of Drosophila melanogaster. Immunol. Rev. 198, 59-71. <https://doi.org/10.1111/j.0105-2896.2004.0130.x>
22. Leclerc, V., Pelte, N., Chamy, L. E., Martinelli, C., Ligoxygakis, P., Hoffmann, J. A., Reichhart, J. M. (2006) Prophenoloxidase activation is not required for survival to microbial infections in Drosophila. EMBO Rep. 7, 231-235. <https://doi.org/10.1038/sj.embor.7400592>
23. Lemaitre, B., Hoffmann, J. (2007) The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743. <https://doi.org/10.1146/annurev.immunol.25.022106.141615>
24. Lemaitre, B., Reichhart, J. M., Hoffmann, J. A. (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA 94, 14614-14619. <https://doi.org/10.1073/pnas.94.26.14614>
25. Liu, J., Shi, G. P., Zhang, W. Q., Zhang, G. R., Xu, W. H. (2006) Cathepsin L function in insect moulting: molecular cloning and functional analysis in cotton bollworm, Helicoverpa armigera. Insect Mol. Biol. 15, 823-834. <https://doi.org/10.1111/j.1365-2583.2006.00686.x>
26. Matsuyama, K., Natori, S. (1988a) Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. J. Biol. Chem. 263, 17112-17116. <https://doi.org/10.1016/S0021-9258(18)37505-7>
27. Matsuyama, K., Natori, S. (1988b) Molecular cloning of cDNA for sapecin and unique expression of the sapecin gene during the development of Sarcophaga peregrina. J. Biol. Chem. 263, 17117-17121. <https://doi.org/10.1016/S0021-9258(18)37506-9>
28. Natori, S., Shiraishi, H., Hori, S., Kobayashi, A. (1999) The roles of Sarcophaga defense molecules in immunity and metamorphosis. Dev. Comp. Immunol. 23, 317-328. <https://doi.org/10.1016/S0145-305X(99)00014-2>
29. Philip, J. M. D., Fitches, E., Harrison, R. L., Bonning, B., Gatehouse, J. A. (2007) Characterization of functional and insecticidal properties of a recombinant cathepsin L-like proteinase from flesh fly (Sarcophaga peregrina), which plays a role in differentiation of imaginal discs. Insect Biochem. Mol. Biol. 37, 589-600. <https://doi.org/10.1016/j.ibmb.2007.03.003>
30. Royet, J. (2004) Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Mol. Immunol. 41, 1063-1075. <https://doi.org/10.1016/j.molimm.2004.06.009>
31. Saito, H., Suzuki, T., Ueno, K., Kubo, T., Natori, S. (1989) Molecular cloning of cDNA for sarcocystatin A and analysis of the expression of the sarcocystatin A gene during development of Sarcophaga peregrina. Biochemistry 28, 1749-1755. <https://doi.org/10.1021/bi00430a049>
32. Saito, H., Kurata, S., Natori, S. (1992) Purification and characterization of a hemocyte proteinase of Sarcophaga, possibly participating in elimination of foreign substances. Eur. J. Biochem. 209, 939-944. <https://doi.org/10.1111/j.1432-1033.1992.tb17366.x>
33. Suzuki, T., Natori, S. (1985) Purification and characterization of an inhibitor of the cysteine protease from the hemolymph of Sarcophaga peregrina larvae. J. Biol. Chem. 260, 5115-5120. <https://doi.org/10.1016/S0021-9258(18)89186-4>
34. Thompson, G. J., Crozier, Y. C., Crozier, R. H. (2003) Isolation and characterization of a termite transferrin gene up-regulated on infection. Insect Mol. Biol. 12, 1-7. <https://doi.org/10.1046/j.1365-2583.2003.00381.x>
35. Tzou, P., Ohresser, S., Ferrandon, D., Capovilla, M., Reichhart, J. M., Lemaitre, B., Hoffmann, J. A., Imler, J. L. (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737-748. <https://doi.org/10.1016/S1074-7613(00)00072-8>
36. Tzou, P., De Gregorio, E., Lemaitre, B. (2002) How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr. Opin. Microbiol. 5, 102-110. <https://doi.org/10.1016/S1369-5274(02)00294-1>
37. Vilmos, P., Kurucz, E. (1998) Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol. Lett. 62, 59-66. <https://doi.org/10.1016/S0165-2478(98)00023-6>
38. Wang, J. X., Zhao, X. F., Liang, Y. L., Li, L., Zhang, W., Ren, Q., Wang, L. C., Wang, L. Y. (2006) Molecular characterization and expression of the antimicrobial peptide defensin from the housefly (Musca domestica). Cell Mol. Life Sci. 63, 3072-3082. <https://doi.org/10.1007/s00018-006-6284-3>
39. Yoshiga, T., Georgieva, T., Dunkov, B. C., Harizanova, N., Ralchev, K., Law, J. H. (1999) Drosophila melanogaster transferrin. Cloning, deduced protein sequence, expression during the life cycle, gene localization and up-regulation on bacterial infection. Eur. J. Biochem. 260, 414-420. <https://doi.org/10.1046/j.1432-1327.1999.00173.x>
40. Zdarek, J. (1980) Endocrine control of the pupariation behavior in flies. Gen. Comp. Endocr. 40, 361.
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive