Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2009, 55, 137-144

https://doi.org/10.14712/fb2009055040137

Cloning, Characterization, Chromosomal Mapping and Tissue Transcription Analysis of Porcine CREB2 and CREB3 Genes

M. Qi1,2, T. Lei2, L. Zhou2, X. D. Chen2, H. Long2, Q. Q. Long2, R. R. Zhang2, Z. Q. Yang2, Li Gan1

1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
2Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China

Received September 2008
Accepted February 2009

References

1. Blot, G., Lopez-Verges, S., Treand, C., Kubat, N. J., DelcroixGenete, D., Emiliani, S., Benarous, R., Berlioz-Torrent, C. (2006) Luman, a new partner of HIV-1 TMgp41, interferes with Tat-mediated transcription of the HIV-1 LTR. J. Mol. Biol. 364, 1034-1047. <https://doi.org/10.1016/j.jmb.2006.09.080>
2. Chen, A., Muzzio, I. A., Malleret, G., Bartsch, D., Verbitsky, M., Pavlidis, P., Yonan, A. L., Vronskaya, S., Grody, M. B., Cepeda, I., Gilliam, T. C., Kandel, E. R. (2003) Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron 39, 655-669. <https://doi.org/10.1016/S0896-6273(03)00501-4>
3. de Winther, M. P., Kanters, E., Kraal, G., Hofker, M. H. (2005) Nuclear factor κB signaling in atherogenesis. Arterioscler. Thromb. Vasc. Biol. 25, 904-914. <https://doi.org/10.1161/01.ATV.0000160340.72641.87>
4. Harding, H. P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., Ron, D. (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099-1108. <https://doi.org/10.1016/S1097-2765(00)00108-8>
5. Harding, H. P., Zhang, Y., Zeng, H., Novoa, I., Lu, P. D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., Stojdl, D. F., Bell, J. C., Hettmann, T., Leiden, J. M., Ron, D. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619-633. <https://doi.org/10.1016/S1097-2765(03)00105-9>
6. Hinnebusch, A. G., Natarajan, K. (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryotic Cell 1, 22-32. <https://doi.org/10.1128/EC.01.1.22-32.2002>
7. Jang, S. W., Kim, Y. S., Kim, Y. R., Sung, H. J., Ko, J. (2007a) Regulation of human LZIP expression by NF-κB and its involvement in monocyte cell migration induced by Lkn-1. J. Biol. Chem. 282, 11092-11100. <https://doi.org/10.1074/jbc.M607962200>
8. Jang, S. W., Kim, Y. S., Lee, Y. H., Ko, J. (2007b) Role of human LZIP in differential activation of the NF-κB pathway that is induced by CCR1-dependent chemokines. J. Cell. Physiol. 211, 630-637. <https://doi.org/10.1002/jcp.20968>
9. Jiang, H. Y., Wek, S. A., McGrath, B. C., Lu, D., Hai, T., Harding, H. P., Wang, X., Ron, D., Cavener, D. R., Wek, R. C. (2004) Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol. Cell. Biol. 24, 1365-1377. <https://doi.org/10.1128/MCB.24.3.1365-1377.2004>
10. Jin, D. Y., Wang, H. L., Zhou, Y., Chun, A. C., Kibler, K. V., Hou, Y. D., Kung, H., Jeang, K. T. (2000) Hepatitis C virus core protein-induced loss of LZIP function correlates with cellular transformation. EMBO J. 19, 729-740. <https://doi.org/10.1093/emboj/19.4.729>
11. Karpinski, B. A., Morle, G. D., Huggenvik, J., Uhler, M. D., Leiden, J. M. (1992) Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc. Natl. Acad. Sci. USA 89, 4820-4824. <https://doi.org/10.1073/pnas.89.11.4820>
12. Ko, J., Jang, S. W., Kim, Y. S., Kim, I. S., Sung, H. J., Kim, H. H., Park, J. Y., Lee, Y. H., Kim, J., Na, D. S. (2004) Human LZIP binds to CCR1 and differentially affects the chemotactic activities of CCR1-dependent chemokines. FASEB J. 18, 890-892. <https://doi.org/10.1096/fj.03-0867fje>
13. Lassot, I., Segeral, E., Berlioz-Torrent, C., Durand, H., Groussin, L., Hai, T., Benarous, R., Margottin-Goguet, F. (2001) ATF4 degradation relies on a phosphorylationdependent interaction with the SCF(βTrCP) ubiquitin ligase. Mol. Cell. Biol. 21, 2192-2202. <https://doi.org/10.1128/MCB.21.6.2192-2202.2001>
14. Lee, W. H., Kim, S. H., Jeong, E. M., Choi, Y. H., Kim, D. I., Lee, B. B., Cho, Y. S., Kwon, B. S., Park, J. E. (2002) A novel chemokine, Leukotactin-1, induces chemotaxis, pro-atherogenic cytokines, and tissue factor expression in atherosclerosis. Atherosclerosis 161, 255-260. <https://doi.org/10.1016/S0021-9150(01)00634-7>
15. Li, P., Zhu, Z., Lu, Y., Granneman, J. G. (2005) Metabolic and cellular plasticity in white adipose tissue II: role of peroxisome proliferator-activated receptor-α. Am. J. Physiol. Endocrinol. Metab. 289, E617-626. <https://doi.org/10.1152/ajpendo.00010.2005>
16. Liang, G., Audas, T. E., Li, Y., Cockram, G. P., Dean, J. D., Martyn, A. C., Kokame, K., Lu, R. (2006) Luman/CREB3 induces transcription of the endoplasmic reticulum (ER) stress response protein Herp through an ER stress response element. Mol. Cell. Biol. 26, 7999-8010. <https://doi.org/10.1128/MCB.01046-06>
17. Lu, P. D., Harding, H. P., Ron, D. (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell. Biol. 167, 27-33. <https://doi.org/10.1083/jcb.200408003>
18. Lu, R., Yang, P., O’Hare, P., Misra, V. (1997) Luman, a new member of the CREB/ATF family, binds to herpes simplex virus VP16-associated host cellular factor. Mol. Cell. Biol. 17, 5117-5126. <https://doi.org/10.1128/MCB.17.9.5117>
19. Lu, R., Misra, V. (2000) Potential role for luman, the cellular homologue of herpes simplex virus VP16 (α gene transinducing factor), in herpesvirus latency. J. Virol. 74, 934-943. <https://doi.org/10.1128/JVI.74.2.934-943.2000>
20. Luciano, R. L., Wilson, A. C. (2000) N-terminal transcriptional activation domain of LZIP comprises two LxxLL motifs and the host cell factor-1 binding motif. Proc. Natl. Acad. Sci. USA 97, 10757-10762. <https://doi.org/10.1073/pnas.190062797>
21. Marone, M., Mozzetti, S., De Ritis, D., Pierelli, L., Scambia, G. (2001) Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol. Proced. Online 3, 19-25. <https://doi.org/10.1251/bpo20>
22. Masuoka, H. C., Townes, T. M. (2002) Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice. Blood 99, 736-745. <https://doi.org/10.1182/blood.V99.3.736>
23. Mohamed, H. A., Yao, W., Fioravante, D., Smolen, P. D., Byrne, J. H. (2005) cAMP-response elements in Aplysia creb1, creb2, and Ap-uch promoters: implications for feedback loops modulating long term memory. J. Biol. Chem. 280, 27035-27043. <https://doi.org/10.1074/jbc.M502541200>
24. Reusch, J. E., Colton, L. A., Klemm, D. J. (2000) CREB activation induces adipogenesis in 3T3-L1 cells. Mol. Cell. Biol. 20, 1008-1020. <https://doi.org/10.1128/MCB.20.3.1008-1020.2000>
25. Siu, F., Bain, P. J., LeBlanc-Chaffin, R., Chen, H., Kilberg, M. S. (2002) ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J. Biol. Chem. 277, 24120-24127. <https://doi.org/10.1074/jbc.M201959200>
26. Szczerbal, I., Lin, L., Stachowiak, M., Chmurzynska, A., Mackowski, M., Winter, A., Flisikowski, K., Fries, R., Switonski, M. (2007) Cytogenetic mapping of DGAT1, PPARA, ADIPOR1 and CREB genes in the pig. J. Appl. Genet. 48, 73-76. <https://doi.org/10.1007/BF03194660>
27. Tanaka, T., Tsujimura, T., Takeda, K., Sugihara, A., Maekawa, A., Terada, N., Yoshida, N., Akira, S. (1998) Targeted disruption of ATF4 discloses its essential role in the formation of eye lens fibres. Genes Cells 3, 801-810. <https://doi.org/10.1046/j.1365-2443.1998.00230.x>
28. Vattem, K. M., Wek, R. C. (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 11269-11274. <https://doi.org/10.1073/pnas.0400541101>
29. Yang, X., Karsenty, G. (2004) ATF4, the osteoblast accumulation of which is determined post-translationally, can induce osteoblast-specific gene expression in non-osteoblastic cells. J. Biol. Chem. 279, 47109-47114. <https://doi.org/10.1074/jbc.M410010200>
30. Yang, X., Matsuda, K., Bialek, P., Jacquot, S., Masuoka, H. C., Schinke, T., Li, L., Brancorsini, S., Sassone-Corsi, P., Townes, T. M., Hanauer, A., Karsenty, G. (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 117, 387-398. <https://doi.org/10.1016/S0092-8674(04)00344-7>
31. Yerle, M., Echard, G., Robic, A., Mairal, A., Dubut-Fontana, C., Riquet, J., Pinton, P., Milan, D., Lahbib-Mansais, Y., Gellin, J. (1996) A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics. Cytogenet. Cell Genet. 73, 194-202. <https://doi.org/10.1159/000134338>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive