Fol. Biol. 2009, 55, 201-217
https://doi.org/10.14712/fb2009055060201
Neocortical Inhibitory System
References
1. 1990) Neuropeptide Y in cortex and striatum. Ultrastructural distribution and coexistence with classical neurotransmitters and neuropeptides. Ann. NY Acad. Sci. 611, 186-205.
< , C., Pickel, V. M. (https://doi.org/10.1111/j.1749-6632.1990.tb48931.x>
2. 1993) Altered distribution of nicotinamide-adenine dinucleotide phos phate – diaphorase cells in frontal lobe of schizophrenia implies disturbances of cortical development. Arch. Gen. Psychiatry 50, 169-177.
< , S., Bunney, W. E., Potkin, S. G.,Wigal, S. B., Hagman, J. O., Sandman, C. A., Jones, E. G. (https://doi.org/10.1001/archpsyc.1993.01820150007001>
3. 2000) Non-uniformity of neocortex: areal heterogenity of NADPH-diaphorase reactive neurons in adult macaque monkeys. Cerebral Cortex 10, 160-74.
< , P., Kennedy, H. (https://doi.org/10.1093/cercor/10.2.160>
4. 2000) Neurons immunoreactive for vasoactive intestinal polypeptide, in the rat primary somatosensory cortex: mor phology and spatial relationship to barrel-related columns. J. Comp. Neurol. 420, 291-304.
, T., Welker, E., Freund, T. F., Zilles, K., Staiger, J. F. (
5. 2002) Excitatory actions of GABA during develop ment: the nature of nurture. Nat. Rev. Neurosci. 3, 728-739.
Ari, Y. (
6. 2000) Emerging principles of altered neuronal circuitry in schizofrenia. Brain Res. Rev. 31, 251-269.
< , F. M. (https://doi.org/10.1016/S0165-0173(99)00041-7>
7. 2003) Age related changes in calbindin – D28K, calretinin and par valbumin-immunoreactive neurons in the human cerebral cortex. Exp. Neurol. 182, 220-231.
< , J., Sathyendra V., Nagykery, N., Geula, C. (https://doi.org/10.1016/S0014-4886(03)00094-3>
8. 2009) Age-re lated changes in GAD levels in the central auditory system of the rat. Exp. Gerontol. 44, 161-169.
< , J., Ouda, L., Profant, O., Syka, J. (https://doi.org/10.1016/j.exger.2008.09.012>
9. 2008) New interneurons in the adult neocortex: small, sparse, but significant? Biol. Psychiatry 63, 650-655.
< , H. A., Dayer, A. G. (https://doi.org/10.1016/j.biopsych.2007.09.023>
10. 2007) Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J. Neurosci. 27, 5224-5235.
< , I., Fiumelli, H., Chen, K., Poo, M. M. (https://doi.org/10.1523/JNEUROSCI.5169-06.2007>
11. 2008) Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition. Cerebral Cortex 18, 1-15.
, A., Rozov, A., Blatow, M., Monyer, H. (
12. 2004) Cortical GABA interneu rons in neurovascular vasoactive pathways. J. Neurosci. 24, 8940-8949.
< , B., Tong, X-K., Rancillac, A., Serluca, N., Lambolez, B., Rossier, J., Hamel, E. (https://doi.org/10.1523/JNEUROSCI.3065-04.2004>
13. 2001) Generating diversity at GABAergic synapses. Trends Neurosci. 24, 155-162.
< , E., Conti, F. (https://doi.org/10.1016/S0166-2236(00)01724-0>
14. 2006) Distribution of NADPH-diaphorase-positive neurons in the prefrontal cortex of the Cebus monkey. Brain Res. 1083, 118-133.
< , R. J., Horta-Júnior, J. A., Bittencourt, J. C., Ervo lino, E., de Oliveira, J. A., Casatti, C. A. (https://doi.org/10.1016/j.brainres.2006.01.098>
15. 2007) The innervation of parvalbumin-containing interneurons by VIP-immunopositive interneurons in the primary so matosensory cortex of the adult rat. Eur. J. Neurosci. 25, 2329-2340.
< , C., Schleicher, A., Zuschratter, W., Staiger, J. (https://doi.org/10.1111/j.1460-9568.2007.05496.x>
16. 2005) New GABAergic interneurons in the adult neocor tex and striatum are generated from different precursors. J. Cell Biol. 168, 415-427.
< , A. G., Cleaver, K. M., Abouantoun, T., Cameron, H. A. (https://doi.org/10.1083/jcb.200407053>
17. 2005) Horizontal spread of ac tivity in neocortical inhibitory networks. Dev. Brain Res. 157, 83-92.
< , R. A., Hablitz, J. J. (https://doi.org/10.1016/j.devbrainres.2005.03.008>
18. 1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteris tics of the synaptic inputs. Progr. Neurobiol. 39, 563-607.
< , J., Fariñas, I. (https://doi.org/10.1016/0301-0082(92)90015-7>
19. 1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin – D28K, parvalbumin and calretininin in the neo cortex. J. Chem. Neuroanat. 14, 1-19.
< , J. (https://doi.org/10.1016/S0891-0618(97)10013-8>
20. 1999) Chandelier cells and epilepsy. Brain 122, 1807-1822.
< , J. (https://doi.org/10.1093/brain/122.10.1807>
21. 1999) Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. J. Comp. Neurol. 412, 515-526.
< , J., González-Albo, M. C., Del Río, M. (https://doi.org/10.1002/(SICI)1096-9861(19990927)412:3<515::AID-CNE10>3.0.CO;2-1>
22. 2002) Microstructure of the neocortex: comparative aspects. J. Neurocytol. 31, 299-316.
< , J., Alonso-Nanclares, L., Arellano, J. I. (https://doi.org/10.1023/A:1024130211265>
23. 1994) A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreacive chandelier cells, and presumptive thalamocortical axons in the human temporal neocortex. J. Comp. Neurol. 342, 389-408.
< , M. R., DeFelipe, J. (https://doi.org/10.1002/cne.903420307>
24. 1996) Colocalization of calbin din D-28k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex. J. Comp. Neurol. 369, 472-482.
< , M. R., DeFelipe, J. (https://doi.org/10.1002/(SICI)1096-9861(19960603)369:3<472::AID-CNE11>3.0.CO;2-K>
25. 1997a) Colocalization of par valbumin and calbindin D-28k in neurons including chan delier cells of the human temporal neocortex. J. Chem. Neuroanat. 17, 165-173.
< , M. R., DeFelipe, J. (https://doi.org/10.1016/S0891-0618(96)00191-3>
26. 1997b) Synaptic connections of calretinin-immunoreactive neurons in the human neocor tex. J. Neurosci. 17, 5143-5154.
< , M. R, DeFelipe, J. (https://doi.org/10.1523/JNEUROSCI.17-13-05143.1997>
27. 2004) Neuronal degeneration induced by status epilepticus in neocortex of immature rats is an area specific process. Epilepsia 45, Suppl. 7, 194-195.
, R., Kubová, H., Mareš, P. (
28. 2002) Postnatal development of parvalbumin and GABA transporter-immunoreactive axon terminals in monkey prefrontal cortex. J. Comp. Neurol. 448, 186-202.
< , S. L., Lewis, D. A. (https://doi.org/10.1002/cne.10249>
29. 1998) Nitric oxide-producing neu rons in the neocortex: morphological and functional rela tionship with intraparenchymal microvasculature. Cerebral Cortex 8, 193-203.
< , C., DeFelipe, J. (https://doi.org/10.1093/cercor/8.3.193>
30. 2003) Neuronal calcium-binding proteins and schizophrenia. Schizophrenia Res. 57, 27-34.
< , D. W., McGrath, J. J., Reynolds, G. P. (https://doi.org/10.1016/S0920-9964(01)00299-7>
31. 2004) Glutamic acid decarboxylase immunoreactivity in callosal projecting neurons of cat and rat somatic sensory cortex. Neuroscience 123, 557-66.
< , M., Manzoni, T. (https://doi.org/10.1016/j.neuroscience.2003.09.011>
32. 1986) Synaptic con nections, axonal and dendritic patterns of neurons immu noreactive for cholecystokinin in the visual cortex of the cat. Neuroscience 19, 1133-1159.
< , T. F., Maglócky, Z., Somogyi, P. (https://doi.org/10.1016/0306-4522(86)90129-6>
33. 2007) Perisomatic inhibition. Neuron 56, 33-42.
< , T. F., Katona, I.. (https://doi.org/10.1016/j.neuron.2007.09.012>
34. 2007) Structural organization of the gap junction network in the cerebral cortex. Neuroscientist 13, 199-207.
< , T. (https://doi.org/10.1177/1073858406296760>
35. 2000) The dual network of GABAergic interneurons linked by both chemical and electrical syn apses: a possible infrastructure of the cerebral cortex. Neurosci. Res. 38, 123-130.
< , T., Kosaka, T. (https://doi.org/10.1016/S0168-0102(00)00163-2>
36. 1996) Local circuit neurons in the medial prefrontal cortex (areas 24 a, b, c, 25, 32) in the monkey. 1. Cell morphology and morphometrics. J. Comp. Neurol. 364, 567-608.
< , P. L. A., Bacon, S. J. (https://doi.org/10.1002/(SICI)1096-9861(19960122)364:4<567::AID-CNE1>3.0.CO;2-1>
37. 1997a) Calretinin neurons in human medial prefrontal cortex (areas 24 a, b, c, 25, 32). J. Comp. Neurol. 381, 389-410.
< , P. L. A., Jays, P. R. L., Bacon, S. J. (https://doi.org/10.1002/(SICI)1096-9861(19970519)381:4<389::AID-CNE1>3.0.CO;2-Z>
38. 1997b) Local-circuit neurons in the me dial prefrontal cortex (areas 25, 32, and 24b) in the rat. Morphology and quantitative distribution. J. Comp. Neurol. 377, 465-499.
< , P. L. A., Dickie, B. G., Vaid, R. R., Headlam, A. J., Bacon, S. J. (https://doi.org/10.1002/(SICI)1096-9861(19970127)377:4<465::AID-CNE1>3.0.CO;2-0>
39. 2006) Amygdala input monosynaptically innervates parvalbumin immuno reactive local circuit neurons in rat medial prefrontal cor tex. Neuroscience 139, 1039-1048.
< , P. L. A., Warner, T. A., Busby, S. J. (https://doi.org/10.1016/j.neuroscience.2006.01.026>
40. 1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72-75.
< , M., Hestrin, S. (https://doi.org/10.1038/47029>
41. 2001) Spike transmission and syn chrony detection in networks of GABAergic interneurons. Science 292, 2295-2299.
< , M., Hestrin, S. (https://doi.org/10.1126/science.1061395>
42. 1879) Di una nuova reasione apparentemente nera dell cellule nervose cerebrali ottenuta col bichloruro di mercurio. Arch. Sci. Med. 3, 1-7.
, C. (
43. 1997) Three distinct families of GABAergic neurons in visual cortex. Cerebral Cortex 7, 347-358.
< , Y., Burkhalter, A. (https://doi.org/10.1093/cercor/7.4.347>
44. 1999) Connectivity of GABAergic neurons in rat primary visual cortex. Cerebral Cortex 9, 683-696.
< , Y., Burkhalter, A., (https://doi.org/10.1093/cercor/9.7.683>
45. 2002) Axo-axonic synapses formed by somatostatin-expressing GABAergic neurons in rat and monkey visual cortex. J. Comp. Neurol. 443, 1-14.
< , Y., Tutney, S., Price, J. L., Burkhalter, A. (https://doi.org/10.1002/cne.1425>
46. 2003) Distinct GABAergic tar gets of feedforward and feedback connections between lower and higher areas of rat visual cortex. J. Neurosci. 26, 10904-10912.
< , Y., Burkhalter, A. (https://doi.org/10.1523/JNEUROSCI.23-34-10904.2003>
47. 2008) Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front. Neuroanatomy 1, 1-11.
< , Y., Wang, Q., Burkhalter, A. (https://doi.org/10.3389/neuro.05.003.2007>
48. 2002) Neurogenesis in adult mammals: some progress and problems. J. Neurosci. 22, 619-623.
< , E., Gross, C. G. (https://doi.org/10.1523/JNEUROSCI.22-03-00619.2002>
49. 2000) Organizing princi ples for a diversity of GABAergic interneurons and syn apses in the neocortex. Science 287, 273-278.
< , A., Wang, Y., Markram, H. (https://doi.org/10.1126/science.287.5451.273>
50. 2006) Electrophysiological classification of somatosta tin-positive interneurons in mouse sensorimotor cortex. J. Neurophysiol. 96, 834-845.
< , B., Shen, F., Huguenard, J. R., Prince, D. A. (https://doi.org/10.1152/jn.01079.2005>
51. 2004) Cholinergic modulation of the cortical mi crovascular bed. Progr. Brain. Res. 145, 171-178.
< , E. (https://doi.org/10.1016/S0079-6123(03)45012-7>
52. 2008) Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur. J. Neurosci. 27, 654-670.
< , P., Jones, B. E. (https://doi.org/10.1111/j.1460-9568.2008.06029.x>
53. 1991) GABA neuronal subpopu lations in cat primary auditory cortex: colocalization with calcium binding proteins. Brain Res. 543, 45-55.
< , S. H. C., Jones, E. G. (https://doi.org/10.1016/0006-8993(91)91046-4>
54. 2005) Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci. 28, 304-309.
< , S., Galarreta, M. (https://doi.org/10.1016/j.tins.2005.04.001>
55. 2003) Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Dev. Brain Res. 141, 39-53.
< , R. F., Neogi, T., Englund, Ch., Daza, R. A. M., Fink A. (https://doi.org/10.1016/S0165-3806(02)00641-7>
56. 2005) Morphomolecular neuro nal phenotypes in the neocortex reflect phylogenetic rela tionships among certain mammalian orders. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 287 A, 1153-1163.
< , P. R., Sherwood, C. C. (https://doi.org/10.1002/ar.a.20252>
57. 1991) Neuronal NADPH diaphorase is a nitric oxide syn thase. Proc. Natl. Acad. Sci. USA 88, 2811-2814.
< , B. T., Michael, G. J., Knigge, K. M., Vincent, S. R. (https://doi.org/10.1073/pnas.88.7.2811>
58. 1991) GABA neurons in seizure disorders: a re view of immunocytochemical studies. Neurochem. Res. 16, 295-308.
< , C. (https://doi.org/10.1007/BF00966093>
59. 2005) Lighting the chan delier: new vistas for axo-axonic cells. Trends Neurosci. 28, 310-316.
< , A., Tamas, G., Soltesz, J. (https://doi.org/10.1016/j.tins.2005.04.004>
60. 2008) Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex. Brain Res. Bull. 75, 119-125.
< , T., Kao, Ch., Sun, O., Li, X., Zhou, Y. (https://doi.org/10.1016/j.brainresbull.2007.08.001>
61. 1998) Regional changes of NADPH-diaphorase and neuropeptide Y neurons in the cerebral cortex of aged Fischer 344 rats. Neurosci. Lett. 247, 79-82.
< , Y., Lee, W., Cho, J., Ahn, H. (https://doi.org/10.1016/S0304-3940(98)00240-7>
62. 1993) Regulation of the cerebral microcircula tion during neural activity: is nitric oxide the missing link? Trends Neurosci. 16, 206-214.
< , C. (https://doi.org/10.1016/0166-2236(93)90156-G>
63. 2002) Intrinsic signals and functional brain map ping: caution, blood vessels at work. Cerebr. Cortex 12, 223-224.
< , C. (https://doi.org/10.1093/cercor/12.3.223>
64. 2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 5, 347-360.
< , C. (https://doi.org/10.1038/nrn1387>
65. 2006) Voltage-gated ion chanels in the axon initial segment of human cortical py ramidal cells and their relationship with chandelier cells. Proc. Natl. Acad. Sci. USA 103, 2920-2925.
< , M. C., DeFelipe, J., Muñoz, A. (https://doi.org/10.1073/pnas.0511197103>
66. 2002) Tangential migration in neocortical de velopment. Dev. Biol. 244, 155-169.
< , D., López-Mascaraque, L. M., Valverde, F., De Carlos, J. A. (https://doi.org/10.1006/dbio.2002.0586>
67. 1975) Varieties and distribution of non-pyrami dal cells in the somatic sensory cortex of the squirrel mon key. J. Comp. Neurol. 160, 205-267.
< , E. G. (https://doi.org/10.1002/cne.901600204>
68. 1993) Correlation of physiologi cal subgroupings of nonpyramidal cells with parvalbumin and calbindin D28k-immunoractive neurons in layer V of rat frontal cortex. J. Neurophysiol. 70, 387-396.
< , Y., Kubota, Y. (https://doi.org/10.1152/jn.1993.70.1.387>
69. 1997) GABAergic cell sub types and their synaptic connections in rat frontal cortex. Cerebral Cortex 7, 476-486.
< , Y., Kubota, Y. (https://doi.org/10.1093/cercor/7.6.476>
70. 2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers form specific GABAergic interneuron types in the rat frontal cortex. J. Neurocytol. 31, 277-287.
< , Y., Kondo, S. (https://doi.org/10.1023/A:1024126110356>
71. 2007) Cajal-Retzius cells in mouse neocor tex receive two types of pre and postsynaptically distinct GABAergic inputs. J. Physiol. 585, 881-895.
< , K., Dvorzhak, A., Henneberger, Ch., Grantyn, R., Kirischuk, S. (https://doi.org/10.1113/jphysiol.2007.145003>
72. 1992) GABAergic networks of basket cells in the visual cortex. Progr. Brain Res. 90, 385-405.
< , Z. F. (https://doi.org/10.1016/S0079-6123(08)63623-7>
73. 2001) Prefrontal micro circuits: membrane properties and excitatory imput of lo cal, medium, and wide arbor interneurons. J. Neurosci. 21, 3788-3796.
< , L. S., Goldman-Rakic, P. S. (https://doi.org/10.1523/JNEUROSCI.21-11-03788.2001>
74. 2005) Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2–3 of monkey dorsolateral prefrontal cortex. J. Neurophysiol. 94, 3009-3022.
< , L. S., Zaitsev, A. V., Czanner, G., Kröner, S., Gonzalez Burgos, G., Povysheva, N. V. (https://doi.org/10.1152/jn.00156.2005>
75. 2006) Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. Cerebral Cortex 17, 1020-1032.
< , S., Krimer, L. S., Lewis, D. A., Barrionuevo, G. (https://doi.org/10.1093/cercor/bhl012>
76. 2004) Long-term behavioral and morphological consequences of nonconvulsive status epilepticus in rats. Epilepsy Behav. 5, 180-191.
< , P., Mikulecká, A., Druga, R., Kubová, H., Hlinák, Z., Suchomelová, L., Mareš, P. (https://doi.org/10.1016/j.yebeh.2003.11.032>
77. 1994) Three distinct subpopu lations of GABA-ergic neurons in rat frontal agranular cor tex. Brain Res. 649, 159-173.
< , Y., Hattori, R., Yui, Y. (https://doi.org/10.1016/0006-8993(94)91060-X>
78. 1989) Distribution of neuropeptide Y containing perikarya and axons in various neocortical areas in the macaque monkey. J. Comp. Neurol. 280, 383-392.
< , R. O., Rakic, P. (https://doi.org/10.1002/cne.902800305>
79. 2008) Cholinergic control of GABA release: emerging parallels between neocortex and hippocampus. Trends Neurosci. 31, 317-327.
< , J. J. (https://doi.org/10.1016/j.tins.2008.03.008>
80. 2005) Immunocytochemical localiza tion of nitric oxide synthase-containing neurons in mouse and rabbit visual cortex and co-localization with calcium binding proteins. Mol. Cells 19, 408-417.
< , J.-E., Jeon, C.-J. (https://doi.org/10.1016/S1016-8478(23)13187-6>
81. 1989) Corticotropin-releas ing factor immunoreactivity in monkey neocortex: an immu nohistochemical analysis. J. Comp. Neurol. 290, 559-613.
< , D. A., Foote, S. L., Cha, C. I. (https://doi.org/10.1002/cne.902900412>
82. 2005) Age-related loss of the GABA synthetic enzyme glutamic acid decar boxylase in rat primary auditory cortex. Neuroscience 132, 1103-1113.
< , L. L., Hughes, L. F., Caspary, D. M. (https://doi.org/10.1016/j.neuroscience.2004.12.043>
83. 1993) Local circuit neurons of de veloping and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics. J. Comp. Neurol. 328, 282-312.
< , J. S., Lewis, D. A. (https://doi.org/10.1002/cne.903280209>
84. 2006) Age-re lated changes of GABAergic neurons and astrocytes in cat primary auditory cortex. Acta Anat. Sinica 37, 514-519.
, X., Hua, Q., Sun, Q., Zhu, Z., Zhang, C. (
85. 2006) Distinct subtypes of somatostatin-contaning neocor tical interneurons revealed in transgenic mice. J. Neurosci. 26, 5069-5082.
< , Y., Hu, H., Berrebi, A. S., Mathers, P. H., Agmon, A. (https://doi.org/10.1523/JNEUROSCI.0661-06.2006>
86. 1996) Inhibitory neurons in the human epileptogenic temporal neocortex. An immu nocytochemical study. Brain 119, 1327-1347.
< , P., Sola, R. G., Pulido, P., Alijarde, M. T., Sánchez, A., Ramón y Cajal, S., DeFelipe, J. (https://doi.org/10.1093/brain/119.4.1327>
87. 1997) Altered synaptic circuitry in the human temporal neocortex removed from epileptic pa tients. Exp. Brain. Res. 114, 1-10.
< , P., DeFelipe, J. (https://doi.org/10.1007/PL00005608>
88. 2001) A long, remarkable jour ney: a tangential migration in the telencephalon. Nat. Rev. Neurosci. 2, 780-790.
< , O., Rubenstein, J. L. (https://doi.org/10.1038/35097509>
89. 1969) Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. Brain Res. 14, 633-646.
< , M. (https://doi.org/10.1016/0006-8993(69)90204-2>
90. 2004) Interneurons of the neocorti cal inhibitory system. Nat. Rev. Neurosci. 5, 793-807.
< , H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu C. (https://doi.org/10.1038/nrn1519>
91. 2003) Pyramidal neuron lo cal axon terminals in monkey prefrontal cortex: differential targeting of subclasses of GABA neurons. Cerebral Cortex 13, 452-460.
< , D. S., Lewis, D. A. (https://doi.org/10.1093/cercor/13.5.452>
92. 1993) Neocortical, hippocampal and septal parvalbu min and somatostatin-containing neurons in young and aged rats: correlation with passive avoidance and water maze performance. Neuroscience 53, 367-378.
< , R., Sirviő, J., Riekkinen, P, Laakso M. P., Riekkinen, M. (https://doi.org/10.1016/0306-4522(93)90201-P>
93. 2008) Subcellular compartmentalization of two calcium binding proteins, calretinin and calbindin-28kDa, in ganglion and amacrine cells of the rat retina. Mol. Vision 31, 1600-1613.
, D. K., Wensel, T. G., Frishman, L. J. (
94. 1997) Life and death of neurons in the aging brain. Science 278, 412-419.
< , J. H., Hof, P. R. (https://doi.org/10.1126/science.278.5337.412>
95. 2007) Life and death of neurons in the aging cerebral cortex. Int. Rev. Neurobiol. 81, 41-57.
< , J. H., Hof, P. R. (https://doi.org/10.1016/S0074-7742(06)81004-4>
96. 2002) Regional alterations of the NO/NOS system in the aging brain: a biochemical, histochemical and immuno cytochemical study in the rat. Brain Res. 993, 31-41.
< , D., Virgili, M., Monti, B., Contestabile,A., Scherini, E. (https://doi.org/10.1016/S0006-8993(02)02302-8>
97. 1995) Areal differences of NPY mRNA expressing neurons are established in the late postnatal rat visual cortex in vivo, but not in organotypic cultures. Eur. J. Neurosci. 7, 2139-2158.
< , K., Wahle, P. (https://doi.org/10.1111/j.1460-9568.1995.tb00636.x>
98. 2003) NADPH-diaphorase-positive neurons in the auditory cor tex of young and old rats. Neuroreport 14, 363-366.
< , L., Nwabueze-Ogbo, F. C., Druga, R., Syka, J. (https://doi.org/10.1097/00001756-200303030-00013>
99. 2008) Changes in parvalbumin immunoreactivity with aging in the central auditory system of the rat. Exp. Geront. 43, 782-789.
< , L., Druga, R., Syka, J. (https://doi.org/10.1016/j.exger.2008.04.001>
100. 2001) Serotoninergic afferents preferentially innervate distinct subclasses of peptidergic interneurons in the rat visual cortex. Brain Res. 891, 158-167.
< , C. D., Papadopoulos, G. C. (https://doi.org/10.1016/S0006-8993(00)03193-0>
101. 2002) Structural changes that occur during normal aging of primate cerebral hemisphere. Neurosci. Biobehav. Rev. 26, 733-741.
< , A. (https://doi.org/10.1016/S0149-7634(02)00060-X>
102. 2001) Age-related decline of presumptive inhibitory synapse in the sen sorimotor cortex as revealed by the physical disector. J. Comp. Neurol. 439, 65-72.
< , B. H., Linville, C., Brunso-Bechtold, J. (https://doi.org/10.1002/cne.1335>
103. 1998) Properties of bipolar VIPergic interneu rons and their excitation by pyramidal neurons in the rat neocortex. Eur. J. Neurosci. 10, 3617-3628.
< , J. T., Cauli, B., Staiger, J. F., Lambolez, B., Rossier, J., Audinat, E. (https://doi.org/10.1046/j.1460-9568.1998.00367.x>
104. 2004) γ-aminobutyric acidergic in terneuron vulnerability to aging in canine prefrontal cortex. J. Neurosci. Res. 77, 913-920.
< , M., Carrasco, J. L., Geloso, M. C., Mascort, J., Michetti, F., Mahy, N. (https://doi.org/10.1002/jnr.20223>
105. 2007) GABAergic neurons immunoreactive for calcium binding proteins are re duced in the prefrontal cortex in major depression. Neuropsychopharmacology 32, 471-482.
< , G., O’Dwyer, G., Teleki, Z., Stockmeier, C. A., Miguel-Hidalgo, J. J. (https://doi.org/10.1038/sj.npp.1301234>
106. Ramón y Cajal, S. (1911) Histology of the nervous system of man and of vertebrates. Vol. II, pp. 1-993. A. Maloine, Paris (in French)
107. Ramón y Cajal, S. (1937) Recollections of my life. MIT Press, Cambridge.
108. 2001) Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding pro tein immunoreactivity. Brain Res. Bull. 55, 579-584.
< , G. P., Zhang, Z. J., Beasley, C. L. (https://doi.org/10.1016/S0361-9230(01)00526-3>
109. 2007) The neuronal pathology of schizophrenia: molecules and mechanisms. Biochem. Soc. Trans. 35, 433-436.
< , G. P., Harte, M. K. (https://doi.org/10.1042/BST0350433>
110. 2008) Changes in density of calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder. Neuropathology 28, 143-150.
< , T., Oshima, A., Nozako, Y., Ida, I., Haga, Ch. Akiyama, H., Nakazato, Y., Mikuni, M. (https://doi.org/10.1111/j.1440-1789.2007.00867.x>
111. 2007) Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurons. J. Neurochem. 100, 727-735.
< , H., Arendt, O., Brown E. B., Schwaller, B., Eilers J. (https://doi.org/10.1111/j.1471-4159.2006.04231.x>
112. 2002) “New” functions for “old” proteins: the role of the calcium-bind ing proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1, 241-258.
< , B., Meyer, M., Schiffmann, S. (https://doi.org/10.1080/147342202320883551>
113. 2005) NOS-positive local circuit neurons are exclusively axo-dendritic cells both in the neo and archicortex of the rat brain. Brain Res. 1056, 183-190.
< , L., Ábrahám, H., Hajnal, A., Lin, H., Totterdell, S. (https://doi.org/10.1016/j.brainres.2005.07.034>
114. 2002) Alterations of the neocortical GABAergic system in the pilocarpine model of temporal lobe epilepsy: neuro nal damage and immunocytochemical changes in chronic epileptic rats. Brain Res. Bull. 58, 417-421.
< , V. A., Sanabria, E. R. G., Cavalheiro, E. A., Spreafico, R. (https://doi.org/10.1016/S0361-9230(02)00811-0>
115. 2005) Gap-junctional coupling between neurogliaform cells and various interneuron types in the neocortex. J. Neurosci. 25, 6278-6285.
< , A., Oláh, S., Molnár, G., Szabadics, J., Tamas, G. (https://doi.org/10.1523/JNEUROSCI.1431-05.2005>
116. 1998) Salient features of synaptic organization in the cerebral cortex. Brain Res. Rev. 26, 113-135.
< , P., Tamas, G., Lujan, R., Buhl, E. H. (https://doi.org/10.1016/S0165-0173(97)00061-1>
117. 2005) The cells of Cajal-Retzius: still a mystery one century after. Neuron 46, 389-394.
< , E., del Rio, J. A. (https://doi.org/10.1016/j.neuron.2005.04.019>
118. 2004) Calbindin-containing interneurons are a target for VIP-immunoreactive synapses in rat primary somatosen sory cortex. J. Comp. Neurol. 468, 179-189.
< , J. F., Masanneck, C., Schleicher, A., Zuschratter, W. (https://doi.org/10.1002/cne.10953>
119. 2003) Tlx controls proliferation and patterning of lateral telencephalic progen itor domains. J. Neurosci. 23, 10568-10576.
< , J. M., Wang, B., Campbell, K. (https://doi.org/10.1523/JNEUROSCI.23-33-10568.2003>
120. 1974) Conceptual models of neural organization. Neurosci. Res. Prog. Bull. 12, 306-310.
, J., Arbib, M. A. (
121. 2004) Correlation maps al low neuronal electrical properties to be predicted from sin gle-cell gene expression profiles in rat neocortex. Cerebral Cortex 14, 1310-327.
< , M., Blumenfeld, B., Wu, C., Luo, J., Attali, B., Goodman, P., Markram, H. (https://doi.org/10.1093/cercor/bhh092>
122. 1994) Neuropeptide Y and somato statin in the neocortex of young and aging rats: response to nucleus basalis lesion. J. Chem. Neuroanat. 7, 25-34.
< , J. W., Schmidt Y. (https://doi.org/10.1016/0891-0618(94)90005-1>
123. Valverde, F. (1965) Studies on the piriform lobe. Harvard University Press, Cambridge.
124. 2000) Decreased glutamic acid decarboxy lase 67 messenger RNA expression in subset of prefron tal cortical γ-aminobutyric acid neurons in subjects with schizofrenia. Arch. Gen. Psychiatry 57, 237-245.
< , D. W., Austin, M. C., Pierri, J. N., Sampson, A. R., Lewis, D. A. (https://doi.org/10.1001/archpsyc.57.3.237>
125. 2001) Substance P and nitric oxide signaling in cerebral cor tex: anatomical evidence for recoprocal signaling between two classes of interneurons. J. Comp. Neurol. 441, 283-301.
< , M., Schmidt, H. H. W., Weinberg, R. J., Burette, A. (https://doi.org/10.1002/cne.1413>
126. 2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in developing so matosensory cortex. Cerebral Cortex 12, 395-410.
< , Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z., Markram, H. (https://doi.org/10.1093/cercor/12.4.395>
127. 2004) Anatomical, physiological and molecular properties of Martinotti cells in the somato sensory cortex of juvenile cat. J. Physiol. 561, 65-90.
< , Y., Toledo-Rodriguez, M., Gupta, A., Wu, C., Silberberg, G., Luo, J., Markram, H. (https://doi.org/10.1113/jphysiol.2004.073353>
128. 2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in mamma lian basal forebrain. Development 128, 3759-3771.
< , H., Turnbull, D. H., Nery, S., Fishell, G., Alvarez Buylla, A. (https://doi.org/10.1242/dev.128.19.3759>
129. 2005) Cortical interneurons and their origins. Neuroscientist 11, 199-205.
< , C., Anderson, A. (https://doi.org/10.1177/1073858404270968>
130. 2004) Origins of cortical internerneurons subtypes. J. Neurosci. 17, 2612-2622.
< , Q., Cobos, I., De La Cruz, E., Rubenstein, J. L., Anderson, S. A. (https://doi.org/10.1523/JNEUROSCI.5667-03.2004>
131. 1996) NADPH-diapho rase-positive neurons in primate cerebral cortex colocal ize with GABA and calcium-binding proteins. Cerebral Cortex 6, 524-529.
< , X. X., Jen, L. S., Garey, L. J. (https://doi.org/10.1093/cercor/6.3.524>
132. 2005) Localization of cal cium-binding proteins in physiologically and morphologi cally characterized interneurons in monkey prefrontal cor tex. Cerebral Cortex 15, 1178-1186.
< , A. V., Gonzales-Burgos, G., Povysheva, N. V., Kröner, S., Lewis, D. A., Krimer, L. S. (https://doi.org/10.1093/cercor/bhh218>
133. 2006) Densities of parvalbumin immunoreactive neurons in non-malformed hippocampal sclerosis-temporal neocortex and in cortical dysplasias. Brain Res. Bull. 68, 474-481.
< , J., Kršek, P., Druga, R., Marusič, P., Beneš, V., Tichý, M., Komárek, V. (https://doi.org/10.1016/j.brainresbull.2005.10.008>