Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2009, 55, 201-217

https://doi.org/10.14712/fb2009055060201

Neocortical Inhibitory System

Rastislav Druga

Charles University in Prague, Institute of Anatomy, 2nd and 1st Faculty of Medicine, Prague, Czech Republic

References

1. Aoki, C., Pickel, V. M. (1990) Neuropeptide Y in cortex and striatum. Ultrastructural distribution and coexistence with classical neurotransmitters and neuropeptides. Ann. NY Acad. Sci. 611, 186-205. <https://doi.org/10.1111/j.1749-6632.1990.tb48931.x>
2. Akbarian, S., Bunney, W. E., Potkin, S. G.,Wigal, S. B., Hagman, J. O., Sandman, C. A., Jones, E. G. (1993) Altered distribution of nicotinamide-adenine dinucleotide phos phate – diaphorase cells in frontal lobe of schizophrenia implies disturbances of cortical development. Arch. Gen. Psychiatry 50, 169-177. <https://doi.org/10.1001/archpsyc.1993.01820150007001>
3. Barone, P., Kennedy, H. (2000) Non-uniformity of neocortex: areal heterogenity of NADPH-diaphorase reactive neurons in adult macaque monkeys. Cerebral Cortex 10, 160-74. <https://doi.org/10.1093/cercor/10.2.160>
4. Baykatar, T., Welker, E., Freund, T. F., Zilles, K., Staiger, J. F. (2000) Neurons immunoreactive for vasoactive intestinal polypeptide, in the rat primary somatosensory cortex: mor phology and spatial relationship to barrel-related columns. J. Comp. Neurol. 420, 291-304.
5. Ben Ari, Y. (2002) Excitatory actions of GABA during develop ment: the nature of nurture. Nat. Rev. Neurosci. 3, 728-739.
6. Benes, F. M. (2000) Emerging principles of altered neuronal circuitry in schizofrenia. Brain Res. Rev. 31, 251-269. <https://doi.org/10.1016/S0165-0173(99)00041-7>
7. Bu, J., Sathyendra V., Nagykery, N., Geula, C. (2003) Age related changes in calbindin – D28K, calretinin and par valbumin-immunoreactive neurons in the human cerebral cortex. Exp. Neurol. 182, 220-231. <https://doi.org/10.1016/S0014-4886(03)00094-3>
8. Burianova, J., Ouda, L., Profant, O., Syka, J. (2009) Age-re lated changes in GAD levels in the central auditory system of the rat. Exp. Gerontol. 44, 161-169. <https://doi.org/10.1016/j.exger.2008.09.012>
9. Cameron, H. A., Dayer, A. G. (2008) New interneurons in the adult neocortex: small, sparse, but significant? Biol. Psychiatry 63, 650-655. <https://doi.org/10.1016/j.biopsych.2007.09.023>
10. Cancedda, I., Fiumelli, H., Chen, K., Poo, M. M. (2007) Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J. Neurosci. 27, 5224-5235. <https://doi.org/10.1523/JNEUROSCI.5169-06.2007>
11. Caputi, A., Rozov, A., Blatow, M., Monyer, H. (2008) Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition. Cerebral Cortex 18, 1-15.
12. Cauli, B., Tong, X-K., Rancillac, A., Serluca, N., Lambolez, B., Rossier, J., Hamel, E. (2004) Cortical GABA interneu rons in neurovascular vasoactive pathways. J. Neurosci. 24, 8940-8949. <https://doi.org/10.1523/JNEUROSCI.3065-04.2004>
13. Cherubini, E., Conti, F. (2001) Generating diversity at GABAergic synapses. Trends Neurosci. 24, 155-162. <https://doi.org/10.1016/S0166-2236(00)01724-0>
14. Cruz-Rizzolo, R. J., Horta-Júnior, J. A., Bittencourt, J. C., Ervo lino, E., de Oliveira, J. A., Casatti, C. A. (2006) Distribution of NADPH-diaphorase-positive neurons in the prefrontal cortex of the Cebus monkey. Brain Res. 1083, 118-133. <https://doi.org/10.1016/j.brainres.2006.01.098>
15. Dávid, C., Schleicher, A., Zuschratter, W., Staiger, J. (2007) The innervation of parvalbumin-containing interneurons by VIP-immunopositive interneurons in the primary so matosensory cortex of the adult rat. Eur. J. Neurosci. 25, 2329-2340. <https://doi.org/10.1111/j.1460-9568.2007.05496.x>
16. Dayer, A. G., Cleaver, K. M., Abouantoun, T., Cameron, H. A. (2005) New GABAergic interneurons in the adult neocor tex and striatum are generated from different precursors. J. Cell Biol. 168, 415-427. <https://doi.org/10.1083/jcb.200407053>
17. DeFazio, R. A., Hablitz, J. J. (2005) Horizontal spread of ac tivity in neocortical inhibitory networks. Dev. Brain Res. 157, 83-92. <https://doi.org/10.1016/j.devbrainres.2005.03.008>
18. DeFelipe, J., Fariñas, I. (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteris tics of the synaptic inputs. Progr. Neurobiol. 39, 563-607. <https://doi.org/10.1016/0301-0082(92)90015-7>
19. DeFelipe, J. (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin – D28K, parvalbumin and calretininin in the neo cortex. J. Chem. Neuroanat. 14, 1-19. <https://doi.org/10.1016/S0891-0618(97)10013-8>
20. DeFelipe, J. (1999) Chandelier cells and epilepsy. Brain 122, 1807-1822. <https://doi.org/10.1093/brain/122.10.1807>
21. DeFelipe, J., González-Albo, M. C., Del Río, M. (1999) Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. J. Comp. Neurol. 412, 515-526. <https://doi.org/10.1002/(SICI)1096-9861(19990927)412:3<515::AID-CNE10>3.0.CO;2-1>
22. DeFelipe, J., Alonso-Nanclares, L., Arellano, J. I. (2002) Microstructure of the neocortex: comparative aspects. J. Neurocytol. 31, 299-316. <https://doi.org/10.1023/A:1024130211265>
23. del Río, M. R., DeFelipe, J. (1994) A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreacive chandelier cells, and presumptive thalamocortical axons in the human temporal neocortex. J. Comp. Neurol. 342, 389-408. <https://doi.org/10.1002/cne.903420307>
24. del Río, M. R., DeFelipe, J. (1996) Colocalization of calbin din D-28k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex. J. Comp. Neurol. 369, 472-482. <https://doi.org/10.1002/(SICI)1096-9861(19960603)369:3<472::AID-CNE11>3.0.CO;2-K>
25. del Río, M. R., DeFelipe, J. (1997a) Colocalization of par valbumin and calbindin D-28k in neurons including chan delier cells of the human temporal neocortex. J. Chem. Neuroanat. 17, 165-173. <https://doi.org/10.1016/S0891-0618(96)00191-3>
26. del Río, M. R, DeFelipe, J. (1997b) Synaptic connections of calretinin-immunoreactive neurons in the human neocor tex. J. Neurosci. 17, 5143-5154. <https://doi.org/10.1523/JNEUROSCI.17-13-05143.1997>
27. Druga, R., Kubová, H., Mareš, P. (2004) Neuronal degeneration induced by status epilepticus in neocortex of immature rats is an area specific process. Epilepsia 45, Suppl. 7, 194-195.
28. Erickson, S. L., Lewis, D. A. (2002) Postnatal development of parvalbumin and GABA transporter-immunoreactive axon terminals in monkey prefrontal cortex. J. Comp. Neurol. 448, 186-202. <https://doi.org/10.1002/cne.10249>
29. Estrada, C., DeFelipe, J. (1998) Nitric oxide-producing neu rons in the neocortex: morphological and functional rela tionship with intraparenchymal microvasculature. Cerebral Cortex 8, 193-203. <https://doi.org/10.1093/cercor/8.3.193>
30. Eyles, D. W., McGrath, J. J., Reynolds, G. P. (2003) Neuronal calcium-binding proteins and schizophrenia. Schizophrenia Res. 57, 27-34. <https://doi.org/10.1016/S0920-9964(01)00299-7>
31. Fabri, M., Manzoni, T. (2004) Glutamic acid decarboxylase immunoreactivity in callosal projecting neurons of cat and rat somatic sensory cortex. Neuroscience 123, 557-66. <https://doi.org/10.1016/j.neuroscience.2003.09.011>
32. Freund, T. F., Maglócky, Z., Somogyi, P. (1986) Synaptic con nections, axonal and dendritic patterns of neurons immu noreactive for cholecystokinin in the visual cortex of the cat. Neuroscience 19, 1133-1159. <https://doi.org/10.1016/0306-4522(86)90129-6>
33. Freund, T. F., Katona, I.. (2007) Perisomatic inhibition. Neuron 56, 33-42. <https://doi.org/10.1016/j.neuron.2007.09.012>
34. Fukuda, T. (2007) Structural organization of the gap junction network in the cerebral cortex. Neuroscientist 13, 199-207. <https://doi.org/10.1177/1073858406296760>
35. Fukuda, T., Kosaka, T. (2000) The dual network of GABAergic interneurons linked by both chemical and electrical syn apses: a possible infrastructure of the cerebral cortex. Neurosci. Res. 38, 123-130. <https://doi.org/10.1016/S0168-0102(00)00163-2>
36. Gabbott, P. L. A., Bacon, S. J. (1996) Local circuit neurons in the medial prefrontal cortex (areas 24 a, b, c, 25, 32) in the monkey. 1. Cell morphology and morphometrics. J. Comp. Neurol. 364, 567-608. <https://doi.org/10.1002/(SICI)1096-9861(19960122)364:4<567::AID-CNE1>3.0.CO;2-1>
37. Gabbott, P. L. A., Jays, P. R. L., Bacon, S. J. (1997a) Calretinin neurons in human medial prefrontal cortex (areas 24 a, b, c, 25, 32). J. Comp. Neurol. 381, 389-410. <https://doi.org/10.1002/(SICI)1096-9861(19970519)381:4<389::AID-CNE1>3.0.CO;2-Z>
38. Gabbott, P. L. A., Dickie, B. G., Vaid, R. R., Headlam, A. J., Bacon, S. J. (1997b) Local-circuit neurons in the me dial prefrontal cortex (areas 25, 32, and 24b) in the rat. Morphology and quantitative distribution. J. Comp. Neurol. 377, 465-499. <https://doi.org/10.1002/(SICI)1096-9861(19970127)377:4<465::AID-CNE1>3.0.CO;2-0>
39. Gabbott, P. L. A., Warner, T. A., Busby, S. J. (2006) Amygdala input monosynaptically innervates parvalbumin immuno reactive local circuit neurons in rat medial prefrontal cor tex. Neuroscience 139, 1039-1048. <https://doi.org/10.1016/j.neuroscience.2006.01.026>
40. Galarreta, M., Hestrin, S. (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72-75. <https://doi.org/10.1038/47029>
41. Galarreta, M., Hestrin, S. (2001) Spike transmission and syn chrony detection in networks of GABAergic interneurons. Science 292, 2295-2299. <https://doi.org/10.1126/science.1061395>
42. Golgi, C. (1879) Di una nuova reasione apparentemente nera dell cellule nervose cerebrali ottenuta col bichloruro di mercurio. Arch. Sci. Med. 3, 1-7.
43. Gonchar, Y., Burkhalter, A. (1997) Three distinct families of GABAergic neurons in visual cortex. Cerebral Cortex 7, 347-358. <https://doi.org/10.1093/cercor/7.4.347>
44. Gonchar, Y., Burkhalter, A., (1999) Connectivity of GABAergic neurons in rat primary visual cortex. Cerebral Cortex 9, 683-696. <https://doi.org/10.1093/cercor/9.7.683>
45. Gonchar, Y., Tutney, S., Price, J. L., Burkhalter, A. (2002) Axo-axonic synapses formed by somatostatin-expressing GABAergic neurons in rat and monkey visual cortex. J. Comp. Neurol. 443, 1-14. <https://doi.org/10.1002/cne.1425>
46. Gonchar, Y., Burkhalter, A. (2003) Distinct GABAergic tar gets of feedforward and feedback connections between lower and higher areas of rat visual cortex. J. Neurosci. 26, 10904-10912. <https://doi.org/10.1523/JNEUROSCI.23-34-10904.2003>
47. Gonchar, Y., Wang, Q., Burkhalter, A. (2008) Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front. Neuroanatomy 1, 1-11. <https://doi.org/10.3389/neuro.05.003.2007>
48. Gould, E., Gross, C. G. (2002) Neurogenesis in adult mammals: some progress and problems. J. Neurosci. 22, 619-623. <https://doi.org/10.1523/JNEUROSCI.22-03-00619.2002>
49. Gupta, A., Wang, Y., Markram, H. (2000) Organizing princi ples for a diversity of GABAergic interneurons and syn apses in the neocortex. Science 287, 273-278. <https://doi.org/10.1126/science.287.5451.273>
50. Halabisky, B., Shen, F., Huguenard, J. R., Prince, D. A. (2006) Electrophysiological classification of somatosta tin-positive interneurons in mouse sensorimotor cortex. J. Neurophysiol. 96, 834-845. <https://doi.org/10.1152/jn.01079.2005>
51. Hamel, E. (2004) Cholinergic modulation of the cortical mi crovascular bed. Progr. Brain. Res. 145, 171-178. <https://doi.org/10.1016/S0079-6123(03)45012-7>
52. Henny, P., Jones, B. E. (2008) Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur. J. Neurosci. 27, 654-670. <https://doi.org/10.1111/j.1460-9568.2008.06029.x>
53. Henry, S. H. C., Jones, E. G. (1991) GABA neuronal subpopu lations in cat primary auditory cortex: colocalization with calcium binding proteins. Brain Res. 543, 45-55. <https://doi.org/10.1016/0006-8993(91)91046-4>
54. Hestrin, S., Galarreta, M. (2005) Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci. 28, 304-309. <https://doi.org/10.1016/j.tins.2005.04.001>
55. Hevner, R. F., Neogi, T., Englund, Ch., Daza, R. A. M., Fink A. (2003) Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Dev. Brain Res. 141, 39-53. <https://doi.org/10.1016/S0165-3806(02)00641-7>
56. Hof, P. R., Sherwood, C. C. (2005) Morphomolecular neuro nal phenotypes in the neocortex reflect phylogenetic rela tionships among certain mammalian orders. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 287 A, 1153-1163. <https://doi.org/10.1002/ar.a.20252>
57. Hope, B. T., Michael, G. J., Knigge, K. M., Vincent, S. R. (1991) Neuronal NADPH diaphorase is a nitric oxide syn thase. Proc. Natl. Acad. Sci. USA 88, 2811-2814. <https://doi.org/10.1073/pnas.88.7.2811>
58. Houser, C. (1991) GABA neurons in seizure disorders: a re view of immunocytochemical studies. Neurochem. Res. 16, 295-308. <https://doi.org/10.1007/BF00966093>
59. Howard, A., Tamas, G., Soltesz, J. (2005) Lighting the chan delier: new vistas for axo-axonic cells. Trends Neurosci. 28, 310-316. <https://doi.org/10.1016/j.tins.2005.04.004>
60. Hua, T., Kao, Ch., Sun, O., Li, X., Zhou, Y. (2008) Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex. Brain Res. Bull. 75, 119-125. <https://doi.org/10.1016/j.brainresbull.2007.08.001>
61. Huh, Y., Lee, W., Cho, J., Ahn, H. (1998) Regional changes of NADPH-diaphorase and neuropeptide Y neurons in the cerebral cortex of aged Fischer 344 rats. Neurosci. Lett. 247, 79-82. <https://doi.org/10.1016/S0304-3940(98)00240-7>
62. Iadecola, C. (1993) Regulation of the cerebral microcircula tion during neural activity: is nitric oxide the missing link? Trends Neurosci. 16, 206-214. <https://doi.org/10.1016/0166-2236(93)90156-G>
63. Iadecola, C. (2002) Intrinsic signals and functional brain map ping: caution, blood vessels at work. Cerebr. Cortex 12, 223-224. <https://doi.org/10.1093/cercor/12.3.223>
64. Iadecola, C. (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 5, 347-360. <https://doi.org/10.1038/nrn1387>
65. Inda, M. C., DeFelipe, J., Muñoz, A. (2006) Voltage-gated ion chanels in the axon initial segment of human cortical py ramidal cells and their relationship with chandelier cells. Proc. Natl. Acad. Sci. USA 103, 2920-2925. <https://doi.org/10.1073/pnas.0511197103>
66. Jiménez, D., López-Mascaraque, L. M., Valverde, F., De Carlos, J. A. (2002) Tangential migration in neocortical de velopment. Dev. Biol. 244, 155-169. <https://doi.org/10.1006/dbio.2002.0586>
67. Jones, E. G. (1975) Varieties and distribution of non-pyrami dal cells in the somatic sensory cortex of the squirrel mon key. J. Comp. Neurol. 160, 205-267. <https://doi.org/10.1002/cne.901600204>
68. Kawaguchi, Y., Kubota, Y. (1993) Correlation of physiologi cal subgroupings of nonpyramidal cells with parvalbumin and calbindin D28k-immunoractive neurons in layer V of rat frontal cortex. J. Neurophysiol. 70, 387-396. <https://doi.org/10.1152/jn.1993.70.1.387>
69. Kawaguchi, Y., Kubota, Y. (1997) GABAergic cell sub types and their synaptic connections in rat frontal cortex. Cerebral Cortex 7, 476-486. <https://doi.org/10.1093/cercor/7.6.476>
70. Kawaguchi, Y., Kondo, S. (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers form specific GABAergic interneuron types in the rat frontal cortex. J. Neurocytol. 31, 277-287. <https://doi.org/10.1023/A:1024126110356>
71. Kirmse, K., Dvorzhak, A., Henneberger, Ch., Grantyn, R., Kirischuk, S. (2007) Cajal-Retzius cells in mouse neocor tex receive two types of pre and postsynaptically distinct GABAergic inputs. J. Physiol. 585, 881-895. <https://doi.org/10.1113/jphysiol.2007.145003>
72. Kisvarday, Z. F. (1992) GABAergic networks of basket cells in the visual cortex. Progr. Brain Res. 90, 385-405. <https://doi.org/10.1016/S0079-6123(08)63623-7>
73. Krimer, L. S., Goldman-Rakic, P. S. (2001) Prefrontal micro circuits: membrane properties and excitatory imput of lo cal, medium, and wide arbor interneurons. J. Neurosci. 21, 3788-3796. <https://doi.org/10.1523/JNEUROSCI.21-11-03788.2001>
74. Krimer, L. S., Zaitsev, A. V., Czanner, G., Kröner, S., Gonzalez Burgos, G., Povysheva, N. V. (2005) Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2–3 of monkey dorsolateral prefrontal cortex. J. Neurophysiol. 94, 3009-3022. <https://doi.org/10.1152/jn.00156.2005>
75. Kröner, S., Krimer, L. S., Lewis, D. A., Barrionuevo, G. (2006) Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. Cerebral Cortex 17, 1020-1032. <https://doi.org/10.1093/cercor/bhl012>
76. Kršek, P., Mikulecká, A., Druga, R., Kubová, H., Hlinák, Z., Suchomelová, L., Mareš, P. (2004) Long-term behavioral and morphological consequences of nonconvulsive status epilepticus in rats. Epilepsy Behav. 5, 180-191. <https://doi.org/10.1016/j.yebeh.2003.11.032>
77. Kubota, Y., Hattori, R., Yui, Y. (1994) Three distinct subpopu lations of GABA-ergic neurons in rat frontal agranular cor tex. Brain Res. 649, 159-173. <https://doi.org/10.1016/0006-8993(94)91060-X>
78. Kuljis, R. O., Rakic, P. (1989) Distribution of neuropeptide Y containing perikarya and axons in various neocortical areas in the macaque monkey. J. Comp. Neurol. 280, 383-392. <https://doi.org/10.1002/cne.902800305>
79. Lawrence, J. J. (2008) Cholinergic control of GABA release: emerging parallels between neocortex and hippocampus. Trends Neurosci. 31, 317-327. <https://doi.org/10.1016/j.tins.2008.03.008>
80. Lee, J.-E., Jeon, C.-J. (2005) Immunocytochemical localiza tion of nitric oxide synthase-containing neurons in mouse and rabbit visual cortex and co-localization with calcium binding proteins. Mol. Cells 19, 408-417. <https://doi.org/10.1016/S1016-8478(23)13187-6>
81. Lewis, D. A., Foote, S. L., Cha, C. I. (1989) Corticotropin-releas ing factor immunoreactivity in monkey neocortex: an immu nohistochemical analysis. J. Comp. Neurol. 290, 559-613. <https://doi.org/10.1002/cne.902900412>
82. Ling, L. L., Hughes, L. F., Caspary, D. M. (2005) Age-related loss of the GABA synthetic enzyme glutamic acid decar boxylase in rat primary auditory cortex. Neuroscience 132, 1103-1113. <https://doi.org/10.1016/j.neuroscience.2004.12.043>
83. Lund, J. S., Lewis, D. A. (1993) Local circuit neurons of de veloping and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics. J. Comp. Neurol. 328, 282-312. <https://doi.org/10.1002/cne.903280209>
84. Luo, X., Hua, Q., Sun, Q., Zhu, Z., Zhang, C. (2006) Age-re lated changes of GABAergic neurons and astrocytes in cat primary auditory cortex. Acta Anat. Sinica 37, 514-519.
85. Ma, Y., Hu, H., Berrebi, A. S., Mathers, P. H., Agmon, A. (2006) Distinct subtypes of somatostatin-contaning neocor tical interneurons revealed in transgenic mice. J. Neurosci. 26, 5069-5082. <https://doi.org/10.1523/JNEUROSCI.0661-06.2006>
86. Marco, P., Sola, R. G., Pulido, P., Alijarde, M. T., Sánchez, A., Ramón y Cajal, S., DeFelipe, J. (1996) Inhibitory neurons in the human epileptogenic temporal neocortex. An immu nocytochemical study. Brain 119, 1327-1347. <https://doi.org/10.1093/brain/119.4.1327>
87. Marco, P., DeFelipe, J. (1997) Altered synaptic circuitry in the human temporal neocortex removed from epileptic pa tients. Exp. Brain. Res. 114, 1-10. <https://doi.org/10.1007/PL00005608>
88. Marin, O., Rubenstein, J. L. (2001) A long, remarkable jour ney: a tangential migration in the telencephalon. Nat. Rev. Neurosci. 2, 780-790. <https://doi.org/10.1038/35097509>
89. Marin-Padilla, M. (1969) Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. Brain Res. 14, 633-646. <https://doi.org/10.1016/0006-8993(69)90204-2>
90. Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu C. (2004) Interneurons of the neocorti cal inhibitory system. Nat. Rev. Neurosci. 5, 793-807. <https://doi.org/10.1038/nrn1519>
91. Melchitzky, D. S., Lewis, D. A. (2003) Pyramidal neuron lo cal axon terminals in monkey prefrontal cortex: differential targeting of subclasses of GABA neurons. Cerebral Cortex 13, 452-460. <https://doi.org/10.1093/cercor/13.5.452>
92. Miettinen, R., Sirviő, J., Riekkinen, P, Laakso M. P., Riekkinen, M. (1993) Neocortical, hippocampal and septal parvalbu min and somatostatin-containing neurons in young and aged rats: correlation with passive avoidance and water maze performance. Neuroscience 53, 367-378. <https://doi.org/10.1016/0306-4522(93)90201-P>
93. Mojumder, D. K., Wensel, T. G., Frishman, L. J. (2008) Subcellular compartmentalization of two calcium binding proteins, calretinin and calbindin-28kDa, in ganglion and amacrine cells of the rat retina. Mol. Vision 31, 1600-1613.
94. Morrison, J. H., Hof, P. R. (1997) Life and death of neurons in the aging brain. Science 278, 412-419. <https://doi.org/10.1126/science.278.5337.412>
95. Morrison, J. H., Hof, P. R. (2007) Life and death of neurons in the aging cerebral cortex. Int. Rev. Neurobiol. 81, 41-57. <https://doi.org/10.1016/S0074-7742(06)81004-4>
96. Necchi, D., Virgili, M., Monti, B., Contestabile,A., Scherini, E. (2002) Regional alterations of the NO/NOS system in the aging brain: a biochemical, histochemical and immuno cytochemical study in the rat. Brain Res. 993, 31-41. <https://doi.org/10.1016/S0006-8993(02)02302-8>
97. Obst, K., Wahle, P. (1995) Areal differences of NPY mRNA expressing neurons are established in the late postnatal rat visual cortex in vivo, but not in organotypic cultures. Eur. J. Neurosci. 7, 2139-2158. <https://doi.org/10.1111/j.1460-9568.1995.tb00636.x>
98. Ouda, L., Nwabueze-Ogbo, F. C., Druga, R., Syka, J. (2003) NADPH-diaphorase-positive neurons in the auditory cor tex of young and old rats. Neuroreport 14, 363-366. <https://doi.org/10.1097/00001756-200303030-00013>
99. Ouda, L., Druga, R., Syka, J. (2008) Changes in parvalbumin immunoreactivity with aging in the central auditory system of the rat. Exp. Geront. 43, 782-789. <https://doi.org/10.1016/j.exger.2008.04.001>
100. Paspalas, C. D., Papadopoulos, G. C. (2001) Serotoninergic afferents preferentially innervate distinct subclasses of peptidergic interneurons in the rat visual cortex. Brain Res. 891, 158-167. <https://doi.org/10.1016/S0006-8993(00)03193-0>
101. Peters, A. (2002) Structural changes that occur during normal aging of primate cerebral hemisphere. Neurosci. Biobehav. Rev. 26, 733-741. <https://doi.org/10.1016/S0149-7634(02)00060-X>
102. Poe, B. H., Linville, C., Brunso-Bechtold, J. (2001) Age-related decline of presumptive inhibitory synapse in the sen sorimotor cortex as revealed by the physical disector. J. Comp. Neurol. 439, 65-72. <https://doi.org/10.1002/cne.1335>
103. Porter, J. T., Cauli, B., Staiger, J. F., Lambolez, B., Rossier, J., Audinat, E. (1998) Properties of bipolar VIPergic interneu rons and their excitation by pyramidal neurons in the rat neocortex. Eur. J. Neurosci. 10, 3617-3628. <https://doi.org/10.1046/j.1460-9568.1998.00367.x>
104. Pugliese, M., Carrasco, J. L., Geloso, M. C., Mascort, J., Michetti, F., Mahy, N. (2004) γ-aminobutyric acidergic in terneuron vulnerability to aging in canine prefrontal cortex. J. Neurosci. Res. 77, 913-920. <https://doi.org/10.1002/jnr.20223>
105. Rajkowska, G., O’Dwyer, G., Teleki, Z., Stockmeier, C. A., Miguel-Hidalgo, J. J. (2007) GABAergic neurons immunoreactive for calcium binding proteins are re duced in the prefrontal cortex in major depression. Neuropsychopharmacology 32, 471-482. <https://doi.org/10.1038/sj.npp.1301234>
106. Ramón y Cajal, S. (1911) Histology of the nervous system of man and of vertebrates. Vol. II, pp. 1-993. A. Maloine, Paris (in French)
107. Ramón y Cajal, S. (1937) Recollections of my life. MIT Press, Cambridge.
108. Reynolds, G. P., Zhang, Z. J., Beasley, C. L. (2001) Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding pro tein immunoreactivity. Brain Res. Bull. 55, 579-584. <https://doi.org/10.1016/S0361-9230(01)00526-3>
109. Reynolds, G. P., Harte, M. K. (2007) The neuronal pathology of schizophrenia: molecules and mechanisms. Biochem. Soc. Trans. 35, 433-436. <https://doi.org/10.1042/BST0350433>
110. Sakai, T., Oshima, A., Nozako, Y., Ida, I., Haga, Ch. Akiyama, H., Nakazato, Y., Mikuni, M. (2008) Changes in density of calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder. Neuropathology 28, 143-150. <https://doi.org/10.1111/j.1440-1789.2007.00867.x>
111. Schmidt, H., Arendt, O., Brown E. B., Schwaller, B., Eilers J. (2007) Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurons. J. Neurochem. 100, 727-735. <https://doi.org/10.1111/j.1471-4159.2006.04231.x>
112. Schwaller, B., Meyer, M., Schiffmann, S. (2002) “New” functions for “old” proteins: the role of the calcium-bind ing proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1, 241-258. <https://doi.org/10.1080/147342202320883551>
113. Seress, L., Ábrahám, H., Hajnal, A., Lin, H., Totterdell, S. (2005) NOS-positive local circuit neurons are exclusively axo-dendritic cells both in the neo and archicortex of the rat brain. Brain Res. 1056, 183-190. <https://doi.org/10.1016/j.brainres.2005.07.034>
114. Silva, V. A., Sanabria, E. R. G., Cavalheiro, E. A., Spreafico, R. (2002) Alterations of the neocortical GABAergic system in the pilocarpine model of temporal lobe epilepsy: neuro nal damage and immunocytochemical changes in chronic epileptic rats. Brain Res. Bull. 58, 417-421. <https://doi.org/10.1016/S0361-9230(02)00811-0>
115. Simon, A., Oláh, S., Molnár, G., Szabadics, J., Tamas, G. (2005) Gap-junctional coupling between neurogliaform cells and various interneuron types in the neocortex. J. Neurosci. 25, 6278-6285. <https://doi.org/10.1523/JNEUROSCI.1431-05.2005>
116. Somogyi, P., Tamas, G., Lujan, R., Buhl, E. H. (1998) Salient features of synaptic organization in the cerebral cortex. Brain Res. Rev. 26, 113-135. <https://doi.org/10.1016/S0165-0173(97)00061-1>
117. Soriano, E., del Rio, J. A. (2005) The cells of Cajal-Retzius: still a mystery one century after. Neuron 46, 389-394. <https://doi.org/10.1016/j.neuron.2005.04.019>
118. Staiger, J. F., Masanneck, C., Schleicher, A., Zuschratter, W. (2004) Calbindin-containing interneurons are a target for VIP-immunoreactive synapses in rat primary somatosen sory cortex. J. Comp. Neurol. 468, 179-189. <https://doi.org/10.1002/cne.10953>
119. Stenman, J. M., Wang, B., Campbell, K. (2003) Tlx controls proliferation and patterning of lateral telencephalic progen itor domains. J. Neurosci. 23, 10568-10576. <https://doi.org/10.1523/JNEUROSCI.23-33-10568.2003>
120. Szentágothai, J., Arbib, M. A. (1974) Conceptual models of neural organization. Neurosci. Res. Prog. Bull. 12, 306-310.
121. Toledo-Rodriguez, M., Blumenfeld, B., Wu, C., Luo, J., Attali, B., Goodman, P., Markram, H. (2004) Correlation maps al low neuronal electrical properties to be predicted from sin gle-cell gene expression profiles in rat neocortex. Cerebral Cortex 14, 1310-327. <https://doi.org/10.1093/cercor/bhh092>
122. Unger, J. W., Schmidt Y. (1994) Neuropeptide Y and somato statin in the neocortex of young and aging rats: response to nucleus basalis lesion. J. Chem. Neuroanat. 7, 25-34. <https://doi.org/10.1016/0891-0618(94)90005-1>
123. Valverde, F. (1965) Studies on the piriform lobe. Harvard University Press, Cambridge.
124. Volk, D. W., Austin, M. C., Pierri, J. N., Sampson, A. R., Lewis, D. A. (2000) Decreased glutamic acid decarboxy lase 67 messenger RNA expression in subset of prefron tal cortical γ-aminobutyric acid neurons in subjects with schizofrenia. Arch. Gen. Psychiatry 57, 237-245. <https://doi.org/10.1001/archpsyc.57.3.237>
125. Vruwink, M., Schmidt, H. H. W., Weinberg, R. J., Burette, A. (2001) Substance P and nitric oxide signaling in cerebral cor tex: anatomical evidence for recoprocal signaling between two classes of interneurons. J. Comp. Neurol. 441, 283-301. <https://doi.org/10.1002/cne.1413>
126. Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z., Markram, H. (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in developing so matosensory cortex. Cerebral Cortex 12, 395-410. <https://doi.org/10.1093/cercor/12.4.395>
127. Wang, Y., Toledo-Rodriguez, M., Gupta, A., Wu, C., Silberberg, G., Luo, J., Markram, H. (2004) Anatomical, physiological and molecular properties of Martinotti cells in the somato sensory cortex of juvenile cat. J. Physiol. 561, 65-90. <https://doi.org/10.1113/jphysiol.2004.073353>
128. Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G., Alvarez Buylla, A. (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in mamma lian basal forebrain. Development 128, 3759-3771. <https://doi.org/10.1242/dev.128.19.3759>
129. Wonders, C., Anderson, A. (2005) Cortical interneurons and their origins. Neuroscientist 11, 199-205. <https://doi.org/10.1177/1073858404270968>
130. Xu, Q., Cobos, I., De La Cruz, E., Rubenstein, J. L., Anderson, S. A. (2004) Origins of cortical internerneurons subtypes. J. Neurosci. 17, 2612-2622. <https://doi.org/10.1523/JNEUROSCI.5667-03.2004>
131. Yan, X. X., Jen, L. S., Garey, L. J. (1996) NADPH-diapho rase-positive neurons in primate cerebral cortex colocal ize with GABA and calcium-binding proteins. Cerebral Cortex 6, 524-529. <https://doi.org/10.1093/cercor/6.3.524>
132. Zaitsev, A. V., Gonzales-Burgos, G., Povysheva, N. V., Kröner, S., Lewis, D. A., Krimer, L. S. (2005) Localization of cal cium-binding proteins in physiologically and morphologi cally characterized interneurons in monkey prefrontal cor tex. Cerebral Cortex 15, 1178-1186. <https://doi.org/10.1093/cercor/bhh218>
133. Zámečník, J., Kršek, P., Druga, R., Marusič, P., Beneš, V., Tichý, M., Komárek, V. (2006) Densities of parvalbumin immunoreactive neurons in non-malformed hippocampal sclerosis-temporal neocortex and in cortical dysplasias. Brain Res. Bull. 68, 474-481. <https://doi.org/10.1016/j.brainresbull.2005.10.008>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive