Fol. Biol. 2010, 56, 27-31

https://doi.org/10.14712/fb2010056010027

MicroRNA miR-1 is Up-regulated in Remote Myocardium in Patients with Myocardial Infarction

E. Boštjančič1, N. Zidar1, D. Štajer2, Damjan Glavač1

1Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
2Centre for Intensive Internal Medicine, University Medical Centre, Ljubljana, Slovenia

Received April 2009
Accepted October 2009

References

1. Bravo, V., Rosero, S., Ricordi, C., Pastori, R. L. (2007) Instability of miRNA and cDNAs derivatives in RNA preparations. Biochem. Biophys. Res. Commun. 353, 1052-1055. <https://doi.org/10.1016/j.bbrc.2006.12.135>
2. Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M.L., Segnalini, P., Gu, Y., Dalton, N. D., Elia, L., Latronico, M. V. G., Hoydal, M., Autore, C., Russo, M. A., Dorn II, G. W., Ellingsen, Ø., Ruiz-Lozano, P., Peterson, K. L., Croce, C. M., Peschle, C., Condorelli, G. (2007) MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613-618. <https://doi.org/10.1038/nm1582>
3. Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., Conlon, F. L., Wang, D. Z. (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228-233. <https://doi.org/10.1038/ng1725>
4. Fazi, F., Nervi, C. (2008) MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovasc. Res. 79, 553-561. <https://doi.org/10.1093/cvr/cvn151>
5. Liu, N., Williams, A. H., Kim, Y., McAnally, J., Bezprozvannaya, S., Sutherland, L. B., Richardson, J. A., Bassel-Duby, R., Olson, E. N. (2007) An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc. Natl. Acad. Sci. USA 104, 20844-20849. <https://doi.org/10.1073/pnas.0710558105>
6. Livak, K. J., Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402-408. <https://doi.org/10.1006/meth.2001.1262>
7. Luo, X., Lin, H., Pan, Z., Xiao, J., Zhang, Y., Lu, Y., Yang, B., Wang, Z. (2008) Downregulation of miRNA-1/ miRNA-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J. Biol. Chem. 283, 20045-20052. <https://doi.org/10.1074/jbc.M801035200>
8. Roy, S., Khanna, S., Hussain, S. R., Biswas, S., Azad, A., Rink, C., Gnyawali, S., Shilo, S., Nuovo, G. J., Sen, C. K. (2009) MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res. 82, 21-29. <https://doi.org/10.1093/cvr/cvp015>
9. Scalbert, E., Bril, A. (2008) Implication of microRNAs in the cardiovascular system. Curr. Opin. Pharmacol. 8, 181-188. <https://doi.org/10.1016/j.coph.2007.12.013>
10. Sucharov, C., Bristow, M. R., Port, J. D. (2008) miRNA expression in the failing human heart: functional correlates. J. Mol. Cell. Cardiol. 45, 185-192. <https://doi.org/10.1016/j.yjmcc.2008.04.014>
11. Thum, T., Catalucci, D., Bauersachs, J. (2008) MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc. Res. 79, 562-570. <https://doi.org/10.1093/cvr/cvn137>
12. van Rooij, E., Olson, E. N. (2007) MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J. Clin. Invest. 117, 2369-2376. <https://doi.org/10.1172/JCI33099>
13. van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall W. S., Hill, J. A., Olson, E. N. (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA 105, 3027-13032. <https://doi.org/10.1073/pnas.0805038105>
14. Williams, A. E. (2008) Functional aspects of animal microRNAs. Cell. Mol. Life. Sci. 65, 545-562. <https://doi.org/10.1007/s00018-007-7355-9>
15. Wong, L., Kathy, L., Russell, I., Chen, C. (2007) Endogenous controls for real-time quantitation of miRNA using TaqMan® microRNA assays. Applied Biosystems Application Note.
16. Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., Xiao, J., Shan, H., Wang, Z., Yang, B. (2007) The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J. Cell. Sci. 120, 3045-3052. <https://doi.org/10.1242/jcs.010728>
17. Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., Chen, G., Wang, Z. (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486-491. <https://doi.org/10.1038/nm1569>
18. Yang, B., Lu, Y., Wang, Z. (2008) Control of cardiac excitability by microRNAs. Cardiovasc. Res. 79, 571-580. <https://doi.org/10.1093/cvr/cvn181>
19. Yin, C., Wang, X., Kukreja, R. C. (2008) Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS Lett. 582, 4137-4142. <https://doi.org/10.1016/j.febslet.2008.11.014>
20. Yuan, J. S., Reed, A., Chen, F., Stewart Jr, C. N. (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7, 85-96. <https://doi.org/10.1186/1471-2105-7-85>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive