Fol. Biol. 2010, 56, 27-31
https://doi.org/10.14712/fb2010056010027
MicroRNA miR-1 is Up-regulated in Remote Myocardium in Patients with Myocardial Infarction
References
1. 2007) Instability of miRNA and cDNAs derivatives in RNA preparations. Biochem. Biophys. Res. Commun. 353, 1052-1055.
< , V., Rosero, S., Ricordi, C., Pastori, R. L. (https://doi.org/10.1016/j.bbrc.2006.12.135>
2. 2007) MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613-618.
< , A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M.L., Segnalini, P., Gu, Y., Dalton, N. D., Elia, L., Latronico, M. V. G., Hoydal, M., Autore, C., Russo, M. A., Dorn II, G. W., Ellingsen, Ø., Ruiz-Lozano, P., Peterson, K. L., Croce, C. M., Peschle, C., Condorelli, G. (https://doi.org/10.1038/nm1582>
3. 2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228-233.
< , J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., Conlon, F. L., Wang, D. Z. (https://doi.org/10.1038/ng1725>
4. 2008) MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovasc. Res. 79, 553-561.
< , F., Nervi, C. (https://doi.org/10.1093/cvr/cvn151>
5. 2007) An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc. Natl. Acad. Sci. USA 104, 20844-20849.
< , N., Williams, A. H., Kim, Y., McAnally, J., Bezprozvannaya, S., Sutherland, L. B., Richardson, J. A., Bassel-Duby, R., Olson, E. N. (https://doi.org/10.1073/pnas.0710558105>
6. 2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402-408.
< , K. J., Schmittgen, T. D. (https://doi.org/10.1006/meth.2001.1262>
7. 2008) Downregulation of miRNA-1/ miRNA-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J. Biol. Chem. 283, 20045-20052.
< , X., Lin, H., Pan, Z., Xiao, J., Zhang, Y., Lu, Y., Yang, B., Wang, Z. (https://doi.org/10.1074/jbc.M801035200>
8. 2009) MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res. 82, 21-29.
< , S., Khanna, S., Hussain, S. R., Biswas, S., Azad, A., Rink, C., Gnyawali, S., Shilo, S., Nuovo, G. J., Sen, C. K. (https://doi.org/10.1093/cvr/cvp015>
9. 2008) Implication of microRNAs in the cardiovascular system. Curr. Opin. Pharmacol. 8, 181-188.
< , E., Bril, A. (https://doi.org/10.1016/j.coph.2007.12.013>
10. 2008) miRNA expression in the failing human heart: functional correlates. J. Mol. Cell. Cardiol. 45, 185-192.
< , C., Bristow, M. R., Port, J. D. (https://doi.org/10.1016/j.yjmcc.2008.04.014>
11. 2008) MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc. Res. 79, 562-570.
< , T., Catalucci, D., Bauersachs, J. (https://doi.org/10.1093/cvr/cvn137>
12. 2007) MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J. Clin. Invest. 117, 2369-2376.
< , E., Olson, E. N. (https://doi.org/10.1172/JCI33099>
13. 2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA 105, 3027-13032.
< , E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall W. S., Hill, J. A., Olson, E. N. (https://doi.org/10.1073/pnas.0805038105>
14. 2008) Functional aspects of animal microRNAs. Cell. Mol. Life. Sci. 65, 545-562.
< , A. E. (https://doi.org/10.1007/s00018-007-7355-9>
15. Wong, L., Kathy, L., Russell, I., Chen, C. (2007) Endogenous controls for real-time quantitation of miRNA using TaqMan® microRNA assays. Applied Biosystems Application Note.
16. 2007) The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J. Cell. Sci. 120, 3045-3052.
< , C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., Xiao, J., Shan, H., Wang, Z., Yang, B. (https://doi.org/10.1242/jcs.010728>
17. 2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486-491.
< , B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., Chen, G., Wang, Z. (https://doi.org/10.1038/nm1569>
18. 2008) Control of cardiac excitability by microRNAs. Cardiovasc. Res. 79, 571-580.
< , B., Lu, Y., Wang, Z. (https://doi.org/10.1093/cvr/cvn181>
19. 2008) Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS Lett. 582, 4137-4142.
< , C., Wang, X., Kukreja, R. C. (https://doi.org/10.1016/j.febslet.2008.11.014>
20. 2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7, 85-96.
< , J. S., Reed, A., Chen, F., Stewart Jr, C. N. (https://doi.org/10.1186/1471-2105-7-85>