Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2010, 56, 27-31

https://doi.org/10.14712/fb2010056010027

MicroRNA miR-1 is Up-regulated in Remote Myocardium in Patients with Myocardial Infarction

E. Boštjančič1, N. Zidar1, D. Štajer2, Damjan Glavač1

1Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
2Centre for Intensive Internal Medicine, University Medical Centre, Ljubljana, Slovenia

Received April 2009
Accepted October 2009

Crossref Cited-by Linking

  • Haybar Habib, Hadi Hakimeh, Purrahman Daryush, Mahmoudian-Sani Mohammad Reza, Saki Najmaldin: Emerging Roles of HOTAIR LncRNA in the Pathogenesis and Prognosis of Cardiovascular Diseases. Biomark. Med. 2024, 18, 203. <https://doi.org/10.2217/bmm-2023-0368>
  • Kazlauskait\u0117 Paulina, Vaicekauskait\u0117 Ieva, Venius Jonas, Sabaliauskait\u0117 Rasa, Steponavi\u010dien\u0117 Rita: Plasma microRNAs as Biomarkers for Predicting Radiotherapy Treatment-Induced Cardiotoxicity in Lung Cancer. Life 2024, 14, 1619. <https://doi.org/10.3390/life14121619>
  • Mittal Rishabh, Krishnan M P Sarath, Saxena Rahul, Sampath Ananyan, Goyal Bela: Non-coding RNAs, cancer treatment and cardiotoxicity: A triad of new hope. Cancer Treatment and Research Communications 2023, 36, 100750. <https://doi.org/10.1016/j.ctarc.2023.100750>
  • Jiang Yong, Zhao Ying, Li Zheng-yi, Chen Shuang, Fang Fang, Cai Jian-hui: Potential roles of microRNAs and long noncoding RNAs as diagnostic, prognostic and therapeutic biomarkers in coronary artery disease. International Journal of Cardiology 2023, 384, 90. <https://doi.org/10.1016/j.ijcard.2023.03.067>
  • Bergami Maria, Fabin Natalia, Cenko Edina, Bugiardini Raffaele, Manfrini Olivia: MicroRNAs as Potential Biomarkers in Coronary Artery Disease. CTMC 2023, 23, 454. <https://doi.org/10.2174/1568026623666221221124530>
  • Mehta Vineet, Nagu Priyanka, Inbaraj Baskaran Stephen, Sharma Minaxi, Parashar Arun, Sridhar Kandi: Epigenetics and Gut Microbiota Crosstalk: A potential Factor in Pathogenesis of Cardiovascular Disorders. Bioengineering 2022, 9, 798. <https://doi.org/10.3390/bioengineering9120798>
  • Kab\u0142ak-Ziembicka Anna, Badacz Rafa\u0142, Przew\u0142ocki Tadeusz: Clinical Application of Serum microRNAs in Atherosclerotic Coronary Artery Disease. JCM 2022, 11, 6849. <https://doi.org/10.3390/jcm11226849>
  • Aljakna Aleksandra, Fracasso Tony, Sabatasso Sara: Molecular tissue changes in early myocardial ischemia: from pathophysiology to the identification of new diagnostic markers. Int J Legal Med 2018, 132, 425. <https://doi.org/10.1007/s00414-017-1750-z>
  • Bo\u0161tjan\u010di\u010d Emanuela, Brandner Tanisa, Zidar Nina, Glava\u010d Damjan, \u0160tajer Du\u0161an: Down-regulation of miR-133a/b in patients with myocardial infarction correlates with the presence of ventricular fibrillation. Biomedicine & Pharmacotherapy 2018, 99, 65. <https://doi.org/10.1016/j.biopha.2018.01.019>
  • Choong Oi Kuan, Lee Desy S., Chen Chen-Yun, Hsieh Patrick C.H.: The roles of non-coding RNAs in cardiac regenerative medicine. Non-coding RNA Research 2017, 2, 100. <https://doi.org/10.1016/j.ncrna.2017.06.001>
  • Liu Yi, Liang Yan, Zhang Jin-fang, Fu Wei-ming: MicroRNA-133 mediates cardiac diseases: Mechanisms and clinical implications. Experimental Cell Research 2017, 354, 65. <https://doi.org/10.1016/j.yexcr.2017.03.037>
  • Kura Branislav, Babal Pavel, Slezak Jan: Implication of microRNAs in the development and potential treatment of radiation-induced heart disease. Can. J. Physiol. Pharmacol. 2017, 95, 1236. <https://doi.org/10.1139/cjpp-2016-0741>
  • Greco Simona, Zaccagnini Germana, Voellenkle Christine, Martelli Fabio: microRNAs in ischaemic cardiovascular diseases. Eur Heart J Suppl 2016, 18, E31. <https://doi.org/10.1093/eurheartj/suw012>
  • Rana Indrajeetsinh, Velkoska Elena, Patel Sheila K., Burrell Louise M., Charchar Fadi J.: MicroRNAs mediate the cardioprotective effect of angiotensin-converting enzyme inhibition in acute kidney injury. American Journal of Physiology-Renal Physiology 2015, 309, F943. <https://doi.org/10.1152/ajprenal.00183.2015>
  • Saddic Louis A., Chang Tzuu-Wang, Sigurdsson Martin I., Heydarpour Mahyar, Raby Benjamin A., Shernan Stanton K., Aranki Sary F., Body Simon C., Muehlschlegel Jochen D.: Integrated microRNA and mRNA responses to acute human left ventricular ischemia. Physiological Genomics 2015, 47, 455. <https://doi.org/10.1152/physiolgenomics.00049.2015>
  • Li Meng, Zhang Junping: Circulating MicroRNAs: Potential and Emerging Biomarkers for Diagnosis of Cardiovascular and Cerebrovascular Diseases. BioMed Research International 2015, 2015, 1. <https://doi.org/10.1155/2015/730535>
  • Navarro Isabela Cunha, Ferreira Frederico Moraes, Nakaya Helder I., Baron Monique Andrade, Vilar-Pereira Gláucia, Pereira Isabela Resende, Silva Ana Maria Gonçalves, Real Juliana Monte, De Brito Thales, Chevillard Christophe, Lannes-Vieira Joseli, Kalil Jorge, Cunha-Neto Edecio, Ferreira Ludmila Rodrigues Pinto, Tanowitz Herbert B.: MicroRNA Transcriptome Profiling in Heart of Trypanosoma cruzi-Infected Mice: Parasitological and Cardiological Outcomes. PLoS Negl Trop Dis 2015, 9, e0003828. <https://doi.org/10.1371/journal.pntd.0003828>
  • Wang Zhiguo: miRNA in the Regulation of Ion Channel/Transporter Expression. Comprehensive Physiology 2013, 3, 599. <https://doi.org/10.1002/j.2040-4603.2013.tb00498.x>
  • Zhou Shanshan, Liu Yucheng, Prater Kendell, Zheng Yang, Cai Lu: Roles of microRNAs in pressure overload- and ischemia-related myocardial remodeling. Life Sciences 2013, 93, 855. <https://doi.org/10.1016/j.lfs.2013.08.023>
  • Evangelista Alicia M., Deschamps Anne M., Liu Delong, Raghavachari Nalini, Murphy Elizabeth: miR-222 contributes to sex-dimorphic cardiac eNOS expression via ets-1. Physiological Genomics 2013, 45, 493. <https://doi.org/10.1152/physiolgenomics.00008.2013>
  • Bonet Fernando, Hernandez-Torres Francisco, Esteban Franciso, Aranega Amelia, Franco Diego: Comparative Analyses of MicroRNA Microarrays during Cardiogenesis: Functional Perspectives. Microarrays 2013, 2, 81. <https://doi.org/10.3390/microarrays2020081>
  • Xin Hongqi, Li Yi, Buller Ben, Katakowski Mark, Zhang Yi, Wang Xinli, Shang Xia, Zhang Zheng Gang, Chopp Michael: Exosome-Mediated Transfer of miR-133b from Multipotent Mesenchymal Stromal Cells to Neural Cells Contributes to Neurite Outgrowth. Stem Cells 2012, 30, 1556. <https://doi.org/10.1002/stem.1129>
  • Fang Ji, Song Xiao-Wei, Tian Jing, Chen Hu-Yan, Li Dong-Feng, Wang Jian-Fei, Ren An-Jing, Yuan Wen-Jun, Lin Li: Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes. Apoptosis 2012, 17, 410. <https://doi.org/10.1007/s10495-011-0683-0>
  • Bo\u0161tjan\u010di\u010d Emanuela, Zidar Nina, Glava\u010d Damjan: MicroRNAs and cardiac sarcoplasmic reticulum calcium ATPase-2 in human myocardial infarction: expression and bioinformatic analysis. BMC Genomics 2012, 13. <https://doi.org/10.1186/1471-2164-13-552>
  • Ye Yumei, Perez-Polo Jose R., Qian Jinqiao, Birnbaum Yochai: The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiological Genomics 2011, 43, 534. <https://doi.org/10.1152/physiolgenomics.00130.2010>
  • Chen Li-Hsin, Chiou Guang-Yuh, Chen Yi-Wei, Li Hsin-Yang, Chiou Shih-Hwa: microRNA and aging: A novel modulator in regulating the aging network. Ageing Research Reviews 2010, 9, S59. <https://doi.org/10.1016/j.arr.2010.08.002>
  • Wang Zhiguo: The Role of MicroRNA in Cardiac Excitability. Journal of Cardiovascular Pharmacology 2010, 56, 460. <https://doi.org/10.1097/FJC.0b013e3181edb22c>
Crossref Cited-by Linking logo