Fol. Biol. 2010, 56, 78-82
https://doi.org/10.14712/fb2010056020078
Response Surface Optimization of the Critical Medium Components for the Production of α-Galactosidase from Aspergillus parasiticus MTCC-2796
References
1. , G. S., Sukumaran, R. K., Prema, P. (2008a) Evaluation of α-galactosidase biosynthesis by Streptomyces griseoloalbus in solid-state fermentation using response surface methodology. Lett. Appl. Microbiol. 46, 338-343.
<https://doi.org/10.1111/j.1472-765X.2008.02321.x>
2. , G. S., Sukumaran, R. K., Prema, P. (2008b) Statistical optimization of α-galactosidase production in submerged fermentation by Streptomyces griseoloalbus using response surface methodology. Food Technol. Biotechnol. 46, 171-177.
3. , M. S., Valdez, G. F., Giori, G. S. (2004) Temperature effect on the biological activity of Bifidobacterium longum CRL 849 and Lactobacillus fermentum CRL 251 in pure and mixed cultures grown in soymilk. Food Microbiol. 21, 511-518.
<https://doi.org/10.1016/j.fm.2004.01.001>
4. , V. M., Rezende, S. T., Moreira, M. A., Barros, E. B., Felix, C. R. (2001) Characterization of α-galactosidase from germinating soybean seed and their use for hydrolysis of oligosaccharides. Phytochemistry 58, 67-73.
<https://doi.org/10.1016/S0031-9422(01)00165-0>
5. , A., Singh, S. (2005) Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production. Biochem. Eng. J. 27, 179-190.
<https://doi.org/10.1016/j.bej.2005.08.027>
6. , C., Ruan, H., Shen, H., Chen, Q., Zhou, B., Li, Y., He, G. (2007) Optimization of the fermentation medium for α-galactosidase production from Aspergillus foetidus ZU-G1 using response surface methodology. Biochim. Biophys. Acta 1770, 55-62.
7. , P., de Graaff, L. H., Visser, J. (1998) Characterization of galactosidases from Aspergillus niger: purification of a novel α-galactosidase activity. Enzyme Microb. Tech. 22, 383-390.
<https://doi.org/10.1016/S0141-0229(97)00207-X>
8. Montgomery, D. C. (1997) Response surface methods and other approaches to process optimization. In: Design and Analysis of Experiments, ed. Montgomery, D. C., pp. 427-510, John Wiley and Sons, New York.
9. , J. L. M., Satyanarayana, T. (2003) Statistical optimization of a high maltose-forming, hyperthermostable and Ca2+ independent α-amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology. J. Appl. Microbiol. 95, 712-718.
10. , R. (1997) Response surface optimization of the critical media components for the production of surfactin. J. Chem. Technol. Biotechnol. 68, 263–70.
<https://doi.org/10.1002/(SICI)1097-4660(199703)68:3<263::AID-JCTB631>3.0.CO;2-8>
11. , H., Koboyashi, H., Park, G. G., Komatsu, Y., Sato, T., Kaneko, R., Nagasaki, H., Yoshida, S., Kasamo, K., Kusakabe, I. (1995) Purification and some properties of α-galactosidase from Penicillium purpurogenum. Biosci. Biotech. Bioch. 59, 2333-2335.
<https://doi.org/10.1271/bbb.59.2333>
12. , M. R. S., Nagin Chand, Lonsane, B. K. (1994) Use of Plackett-Burman design for rapid screening of several nitrogen sources, growth/product promoters, minerals and enzyme inducers for the production of α-galactosidase by Aspergillus niger MRSS 234 in solid state fermentation system. Bioprocess Biosys. Eng. 10, 139-144.
