Fol. Biol. 2010, 56, 83-96
https://doi.org/10.14712/fb2010056030083
Epigenetic Studies in Human Diseases
References
1. 2008) The role of histone deacetylases in prostate cancer. Epigenetics 3, 300-309.
< , A., Gupta, S. (https://doi.org/10.4161/epi.3.6.7273>
2. 2009) Epigenetic regulation in human brain-focus on histone lysine methylation. Biol. Psych. 65, 198-203.
< , Sch., Huang, H.-S. (https://doi.org/10.1016/j.biopsych.2008.08.015>
3. 2008) AZGP1 autoantibody predicts survival and histone deacetylase inhibitors increase expression in lung adenocarcinoma. J. Thorac. Oncol. 3, 1236-1244.
< , D. L, Seder, C. W., Chen, G., Wang, X. J., Hartojo, W., Lin, L., Silvers, A., Thomas, D. G., Giordano, T. J., Chang, A. C., Orringer, M. B., Bigbee, W. L., Chinnaiyan, A. M., Beer D. G. (https://doi.org/10.1097/JTO.0b013e318189f5ec>
4. 2008) Prognostic significance of aberrant promoter hypermethylation of CpG islands in patients with diffuse large B-cell lymphomas. Ann. Oncol. 19, 1774-1786.
< , K., Trimeche, M., Ziadi, S., Laatiri, A., Hachana, M., Korbi, S. (https://doi.org/10.1093/annonc/mdn374>
5. 2008) Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer. Mol. Cancer 7, 62.
< , P. P., Galler, J. S., Koss, M. N., Hagen, J. A., Turla, S., Campan, M., Weisenberger, D. J., Laird, P. W., Siegmund, K. D., Laird-Offringa, I. A. (https://doi.org/10.1186/1476-4598-7-62>
6. 2008) Global analysis of the medulloblastoma epigenome identifies disease-subgroup-specific inactivation of COL1A2. Neuro Oncol. 10, 981-994.
< , J. A., Lindsey, J. C., Lusher, M. E., Gilbertson, R. J., Bailey, S., Ellison, D. W., Clifford, S. C. (https://doi.org/10.1215/15228517-2008-048>
7. 2008) Immunohistochemical evaluation of global DNA methylation and histone acetylation in papillary urothelial neoplasm of low malignant potential. Int. J. Immunopathol. Pharmacol. 21, 615-623.
< , F., Mazzucchelli, R., Santinelli, A., Stramazzotti, D., Scarpelli, M., Lopez-Beltran, A., Cheng, L., Montironi, R. (https://doi.org/10.1177/039463200802100315>
8. 2008) Reprimo as a potential biomarker for early detection in gastric cancer. Clin. Cancer Res. 14, 6264.
< , C., Aguayo, F., Villarroel, C., Vargas, M., Díaz, I., Ossandon, F. J., Santibáñez, E., Palma, M., Aravena, E., Barrientos, C., Corvalan, A. H. (https://doi.org/10.1158/1078-0432.CCR-07-4522>
9. 2009) Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur. J. Hum. Genet. 17, 611-619.
< , J., Verde, G., Callaway, J., Maas, S. M., De Crescenzo, A., Sparago, A., Cerrato, F., Russo, S., Ferraiuolo, S., Rinaldi, M. M., Fischetto, R., Lalatta, F., Giordano, L., Ferrari, P., Cubellis, M. V., Larizza, L., Temple, I. K., Mannens, M. M. A. M., Mackay, D. J. G., Riccio, A. (https://doi.org/10.1038/ejhg.2008.233>
10. 2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58, 1229-1236.
< , D., Okabe, J., Tikellis, C., Balcerczyk, A., George, P., Baker, E. K., Calkin, A. C., Brownlee, M., Cooper, M. E., El-Osta, A. (https://doi.org/10.2337/db08-1666>
11. 2008) No association between global leukocyte DNA methylation and homocysteine levels in schizophrenia patients. Schizophr. Res. 101, 50-57.
< , A., Levine, J., Nemetz, B., Belmaker, R. H., Agam, G. (https://doi.org/10.1016/j.schres.2008.01.009>
12. 2008) Epigenetic changes in gliomas. Cancer Biol. Ther. 7, 1326-1334.
< , R., Jenkins, R., Zhang, Z. G. (https://doi.org/10.4161/cbt.7.9.6992>
13. 2008) Genetics, epigenetics and pharmaco-(epi)genomics. J. Cell. Mol. Med. 12, 2533-2551.
< , I., Schmidt, T., Roncal, C., Carmeliet, P., Lambrechts, D. (https://doi.org/10.1111/j.1582-4934.2008.00515.x>
14. 2006) Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res. 66, 8469-8476.
< , B., Ching, T.-T., VandenBerg, S. R., Costello, J. F. (https://doi.org/10.1158/0008-5472.CAN-06-1547>
15. 2007) COX-2 expression induced by diesel particles involves chromatin modification and degradation of HDAC1. Am. J. Respir. Cell. Mol. Biol. 37, 232-239.
< , D., Bromberg, P. A., Samet, J. M. (https://doi.org/10.1165/rcmb.2006-0449OC>
16. 2008) Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27, 7274-7284.
< , Q., Yu, J., Dhanasekaran, S. M., Kim, J. H., Mani, R. S., Tomlins, S. A., Mehra, R., Laxman, B., Cao, X., Yu, J., Kleer, C. G., Varambally, S., Chinnaiyan, A. M. (https://doi.org/10.1038/onc.2008.333>
17. 2009) Promoter hypermethylation in sentinel lymph nodes as a marker for breast cancer recurrence. Breast Cancer Res. Treatment 114, 315-325.
< , H. E., Wang, S., Blackford, A., Guo, M., Powers, P., Jeter, S., Davidson, N. E., Argani, P., Terrell, K., Herman, J. G., Lange, J. R. (https://doi.org/10.1007/s10549-008-0004-7>
18. 2009) Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am. J. Pathol. 174, 736-745.
< , G., Fazzari, M., Kung, G., Kawachi, N., BrandweinGensler, M., McLemore, M., Chen, Q., Burk, R. D., Smith, R. V., Prystowsky, M. B., Belbin, T. J., Schlecht, N. F. (https://doi.org/10.2353/ajpath.2009.080731>
19. 2009) Promoter hypermethylation of the ADAM23 gene in colorectal cancer cell lines and cancer tissues. Int. J. Cancer 124, 1258–1262.
< , J.-S., Kim, K.-H., Jeon, Y.-K., Kim, S.-H., Jang, S.-G., Ku, J.-L., Park, J.-G. (https://doi.org/10.1002/ijc.24023>
20. 2009) Concepts of epigenetics in prostate cancer development. Br. J. Cancer 100, 240-245.
< , C. S., Foster, C. S. (https://doi.org/10.1038/sj.bjc.6604771>
21. 2008) Chromatin, cancer and drug therapies. Mutat. Res. 647, 44-51.
< , C. C., Jones, P. A. (https://doi.org/10.1016/j.mrfmmm.2008.07.006>
22. 2006) SATR-1 hypomethylation is a common and early event in breast cancer. Cancer Genet. Cytogenet. 156, 135-143.
< , F. F., Paixão, V. A., Cavalher, F. P., Ribeiro, K. B., Cunha, I. W., Rinck, J. A. Jr., O’Haree, M., Mackay, A., Soares, F. A., Brentani, R. R., Camargo, A. A. (https://doi.org/10.1016/j.cancergencyto.2005.07.023>
23. 2009) Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int. J. Cancer 124, 81-87.
< , A, Nikolaidis, G., Xinarianos, G., Savvari, P., Cassidy, A., Zakopoulou, R., Kotsinas, A., Gorgoulis, V., Field, J. K., Liloglou, T. (https://doi.org/10.1002/ijc.23849>
24. 2008) Linking heterochromatin protein 1 (HP1) to cancer progression. Mutat. Res. 647 (1-2), 13-20.
< , G. K., Vitalini, M. W., Wallrath, L. L. (https://doi.org/10.1016/j.mrfmmm.2008.09.007>
25. 2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J. Neurosci. 27, 3571-3583.
< , J. P., Godin, J. D., Charrin, B. C., Cordelieres, F. P., King, S. J., Humbert, S., Saudou, F. (https://doi.org/10.1523/JNEUROSCI.0037-07.2007>
26. 2008) Epigenetics in bladder cancer. Int. J. Clin. Oncol. 13, 298-307.
< , H., Nakagawa, M. (https://doi.org/10.1007/s10147-008-0811-1>
27. 2008) Line region hypomethylation is associated with lifestyle and differs by human papillomavirus status in head and neck squamous cell carcinomas. Cancer Epidemiol. Biomarkers Prev. 17, 966-971.
< , C. S., Marsit, C. J., Houseman, E. A., Eddy, K., Kelsey, K. T. (https://doi.org/10.1158/1055-9965.EPI-07-2775>
28. 2009) MicroRNA profiling in human medulloblastoma. Int. J. Cancer 124, 568-577.
< , E., De Smaele, E., Po, A., Di Marcotullio, L., Tosi, E., Espinola, M. S. B., Di Rocco, C., Riccardi, R., Giangaspero, F., Farcomeni, A., Nofroni, I., Laneve, P., Gioia, U., Caffarelli, E., Bozzoni, I., Screpanti, I., Gulino A. (https://doi.org/10.1002/ijc.23948>
29. 2009) Demethylating treatment suppresses natural killer cell cytolytic activity. Mol. Immunol. 46, 2064-2070.
< , X., Linb, J., Wanga, L., Yu, L. (https://doi.org/10.1016/j.molimm.2009.02.033>
30. 2007) Epigenetic silencing of the candidate tumor suppressor gene Per1 in non-small cell lung cancer. Clin. Cancer Res. 13, 1399-1404.
< , S., Komatsu, N., Kawamata, N., Miller, C. W., Desmond, J., Virk, R. K., Marchevsky, A., Mckenna, R., Taguchi, H., Koeffler, H. P. (https://doi.org/10.1158/1078-0432.CCR-06-1730>
31. 2008) Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int. J. Obesity 32, S62-S71.
< , P. D., Hanson, M. A. (https://doi.org/10.1038/ijo.2008.240>
32. 2008) Epigenetic codes in cognition and behaviour. Behav. Brain Res. 192, 70-87.
< , J., Mansuy, I. M. (https://doi.org/10.1016/j.bbr.2008.01.021>
33. 2008) BAGE hypomethylation, a new epigenetic biomarker for colon cancer detection. Cancer Epidemiol. Biomarkers Prev. 17, 1374.
< , C., Brun, M.-E., Rivals, I., Selves, J., Hindermann, W., Favre-Mercuret, M., Granier, G., De Sario, A. (https://doi.org/10.1158/1055-9965.EPI-07-2656>
34. 2009) DNA methylomes, histone codes and miRNAs: Tying it all together. Int. J. Biochem. Cell Biol. 41, 87-95.
< , S., Esteller, M. (https://doi.org/10.1016/j.biocel.2008.09.005>
35. 2008) Epimutation (hypomethylation) affecting the chromosome 14q32.2 imprinted region in a girl with upd(14)mat-like phenotype. Eur. J. Hum. Genet. 16, 1019-1023.
< , K., Ogata, T., Kagami, M., Tanaka, T., Saitoh, S. (https://doi.org/10.1038/ejhg.2008.90>
36. 2006) Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells. Mol. Cancer Ther. 5, 2203-2210.
< , A., Moinfar, F., Kremser, M.-L., Strohmeier, B., Staber, P. B., Zatloukal, K., Denk, H. (https://doi.org/10.1158/1535-7163.MCT-05-0480>
37. 2008) Abnormal histone modification patterns in lupus CD4+ T cells. J. Rheumatol. 35, 804-810.
, N., Qiu, X., Luo, Y., Yuan, J., Li, Y., Lei, W., Zhang, G., Zhou, Y., Su, Y., Lu, Q. (
38. 2009) Current progress in epigenetic research for hepatocarcinoma genesis. Sci. China Ser C 52, 31-42.
< , J. (https://doi.org/10.1007/s11427-009-0014-7>
39. 2009) Epigenetic therapy of leukemia: An update. Int. J. Biochem. Cell Biol. 41, 72-80.
< , N., Rossi, A., Garcia-Manero, G. (https://doi.org/10.1016/j.biocel.2008.10.006>
40. 2008) Application of DNA methylation biomarkers for endometrial cancer management. Exp. Rev. Mol. Diag. 8, 607-616.
< , S. W., Li, J. P., Podratz, K., Dowdy, S. (https://doi.org/10.1586/14737159.8.5.607>
41. 2009) Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 113, 1315-1325.
< , Y., Dunbar, A., Gondek, L. P., Mohan, S., Rataul, M., O’Keefe, Ch., Sekeres, M., Saunthararajah, Y., Maciejewski, J. P. (https://doi.org/10.1182/blood-2008-06-163246>
42. 2006) Complex disease, gender and epigenetics. Ann. Med. 38, 530-544.
< , Z., Wang S. C., Petronis, A. (https://doi.org/10.1080/07853890600989211>
43. 2009) Genome-wide histone methylation profile for heart failure. Genes Cells 14, 69-77.
< , R., Takada, S., Yamashita, Y., Choi, Y. L., NonakaSarukawa, M., Soda, M., Misawa, Y., Isomura, T., Shimada, K., Mano, H. (https://doi.org/10.1111/j.1365-2443.2008.01252.x>
44. 2008) Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int. J. Cancer 123, 552-560.
< , N., Shiina, H., Urakami, S., Kawamoto, K., Hirata, H., Tanaka, Y., Majid, S., Igawa, M., Dahiya, R. (https://doi.org/10.1002/ijc.23590>
45. 2008) Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60, 803-817.
< , D., Frank, C. L., Dobbin, M. M., Tsunemoto, R. K., Tu, W., Peng, P. L., Guan, J.-S., Lee, B.-H., Moy, L. Y., Giusti, P., Broodie, N., Mazitschek, R., Delalle, I., Haggarty, S. J, Neve, R. L., Lu, Y., Tsai, L.-H. (https://doi.org/10.1016/j.neuron.2008.10.015>
46. 2007) Epigenetic regulation: a new research area for melatonin? J. Pineal Res. 44, 41-44.
< , A., Reiter, R. J. (https://doi.org/10.1111/j.1600-079X.2007.00509.x>
47. 2008) Methylation of the MGMT and p16 genes in sporadic colorectal carcinoma and corresponding normal colonic mucosa. Med. Sci. Monit. 14, BR219-BR225.
, L., Strzelczyk, J. K., Adamek, B., ZalewskaZiob, M., Arendt, J., Poltorak, S., Maciejewski, B., Wiczkowski, A. (
48. 2009) Genetic and epigenetic defects in mental retardation. Int. J. Biochem. Cell Biol. 41, 96-107.
< , J. M., van Bokhoven, H. (https://doi.org/10.1016/j.biocel.2008.08.009>
49. 2008) Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia 22, 1529-1538.
< , S. Q., Tong, W. G., Yang, H., Lin, W., Lee, M. K., Fang, Z. H., Wei, Y., Jelinek, J., Issa, J. P., Garcia-Manero, G. (https://doi.org/10.1038/leu.2008.130>
50. 2009) Silencing of MGMT expression by promoter hypermethylation in the metaplasia-dysplasia-carcinoma sequence of Barrett’s esophagus. Cancer Lett. 275, 117-126.
< , D., El-Rifai, W., Peng, D., Ruemmele, P., Kroeckel, I., Peters, B., Moskaluk, Ch. A., Stolte, M., Mönkemüller, K., Meyer, F., Schulz, H.-U., Hartmann, A., Roessner, A., Schneider-Stock, R. (https://doi.org/10.1016/j.canlet.2008.10.009>
51. 2009) Epigenetic regulation and molecular characterization of C/EBPα in pancreatic cancer cells. Int. J. Cancer 124, 827-833.
< , T., Akagi, T., Desmond, J. C., Kawamata, N., Gery, S., Imai, Y., Song, J. H., Gui, D., Seid, J., Koeffler, H. P. (https://doi.org/10.1002/ijc.23994>
52. 2007) How and when environmental agents and dietary factors affect the course of Alzheimer’s disease: The “LEARn” model (Latent early-life associated regulation) may explain the triggering of AD. Curr. Alzheimer Res. 4, 219-228.
< , D. K., Maloney, B., Basha, M. R., Ge, Y. W., Zawia, N. H. (https://doi.org/10.2174/156720507780362164>
53. 2009a) Prognostic significance of O-6-methylguanine DNA methyltransferase and p57 methylation in patients with diffuse large B-cell lymphomas. APMIS 117, 87-94.
< , S. M., Lee, E. J., Ko, Y. H., Lee, S. H., Maeng, L., Kim, K. M. (https://doi.org/10.1111/j.1600-0463.2008.00017.x>
54. 2009b) Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 28, 184-194.
< , S. H., Kim, J., Kim, W. H., Lee, Y. M. (https://doi.org/10.1038/onc.2008.377>
55. 2008a) Methylation of CpG islands of p16INK4a and cyclinD1 overexpression associated with progression of intraductal proliferative lesions of the breast. Hum. Pathol. 39, 1637-1646.
< , T., Niu, Y., Feng, Y., Niu, R., Yu, Y., Lv, A., Yang, Y. (https://doi.org/10.1016/j.humpath.2008.04.001>
56. 2008b) Histone H3 (lys-9) deacetylation is associated with transcriptional silencing of E-cadherin in colorectal cancer cell lines. Cancer Invest. 26, 575-582.
< , Y. Q., Hong, Y., Zhao, Y., Ismail, T. M., Wong, Y. H., Eu, K. W. (https://doi.org/10.1080/07357900701837168>
57. 2009a) Uncovering growth-suppressive microRNAs in lung cancer. Clin. Cancer Res. 15, 1177-1183.
< , X., Sempere, L. F., Galimberti, F., Freemantle, S. J., Black, C., Dragnev, K. H., Ma, Y., Fiering, S., Memolii, V., Li, H., DiRenzo, J., Korc, M., Cole, C. N., Bak, M., Kauppinen, S., Dmitrovsky, E. (https://doi.org/10.1158/1078-0432.CCR-08-1355>
58. 2009b) MicroRNA-18a prevents estrogen receptor-α expression, promoting proliferation of hepatocellular carcinoma cells. Gastroenterology 136, 683-693.
< , W.-H., Yeh, S.-H., Lu, Ch.-Ch., Yu, S.-L., Chen, H.-Y., Lin, Ch.-Y, Chen, D.-S., Chen P.-J. (https://doi.org/10.1053/j.gastro.2008.10.029>
59. 2009c) DNA methylation inhibition increases T cell KIR expression through effects on both promoter methylation and transcription factors. Clin. Immunol. 130, 213-224.
< , Y., Kuick, R., Hanash, S., Richardson, B. (https://doi.org/10.1016/j.clim.2008.08.009>
60. 2008) Epigenomics and breast cancer. Pharmacogenomics 9, 1879-1902.
< , P. K., Sukumar, S. (https://doi.org/10.2217/14622416.9.12.1879>
61. 2008) The sunset of somatic genetics and the dawn of epigenetics: A new frontier in pancreatic cancer research. Curr. Opin. Gastroenterol. 24, 597-602.
< , G., Mathison, A. J., Grzenda, A., Urrutia, R. (https://doi.org/10.1097/MOG.0b013e32830b111d>
62. 2009) How epigenetics can explain human metastasis. A new role for microRNAs. Cell Cycle 8, 377-382.
< , A., Esteller, M. (https://doi.org/10.4161/cc.8.3.7526>
63. 2008) Abnormal DNA methylation in T cells from patients with subacute cutaneous lupus erythematosus. Br. J. Dermatol. 159, 827-833.
< , Y., Li, Y., Su, Y., Yin, H., Hu, N., Wang, S., Lu, Q. (https://doi.org/10.1111/j.1365-2133.2008.08758.x>
64. 2009) MicroRNA expression signature in gastric cancer. Chin. J. Cancer Res. 21, 74-80.
< , H. C., Zhang, Z. Z., Zhang, X., Ning, B., Guo, J. J., Nie, N., Liu, B., Wu, X. L. (https://doi.org/10.1007/s11670-009-0074-z>
65. 2009) The roles of microRNA in cancer and apoptosis. Biol. Rev. 84, 55-71.
< , N., Maher, S. G., Reynolds, J. V. (https://doi.org/10.1111/j.1469-185X.2008.00061.x>
66. 2008) Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 40, 949-951.
< , D. J. G., Callaway, J. L .A., Marks, S. M., White, H. E., Acerini, C. L., Boonen, S. E., Dayanikli, P., Firth, H. V., Goodship, J. A., Haemers, A. P., Hahnemann, J. M. D., Kordonouri, O., Masoud, A. F., Oestergaard, E., Storr, J., Ellard, S., Hattersley, A. T., Robinson, D. O., Temple, I. K. (https://doi.org/10.1038/ng.187>
67. 2009) Epi-drugs to fight cancer: From chemistry to cancer treatment, the road ahead. Int. J. Biochem. Cell Biol. 41, 199-213.
< , A., Altucci, L. (https://doi.org/10.1016/j.biocel.2008.08.020>
68. 2009) Methylation patterns of Rb1 and Casp-8 promoters and their impact on their expression in bladder cancer. Cancer Invest. 27, 70-80.
< , K., Sobti, R. C., Nikbakht, M., Shekari, M., Hosseini, S. A., Tamandani, D. K., Singh, S. K. (https://doi.org/10.1080/07357900802172085>
69. Mastroeni, D., Grover, A., Delvaux, E., Whiteside, C., Coleman, P. D., Rogers, J. (2008) Epigenetic changes in Alzheimer’s disease: Decrements in DNA methylation. Neurobiol. Aging.
<https://doi.org/10.1016/j.neurobiolaging.2008.12.005>
70. 2009) Epigenetics and cancer without genomic instability. Cell Cycle 8, 23-26.
< , E. S., Roberts, C. W. M. (https://doi.org/10.4161/cc.8.1.7290>
71. 2008) Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog. Neurobiol. 86, 305-341.
< , M. F. (https://doi.org/10.1016/j.pneurobio.2008.10.001>
72. 2008) Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: An epigenetic study in diabetes. Diabetes 57, 3189-3198.
< , F., Smith, D. D., Zhang, L. X., Min, A., Feng, W., Natarajan, R. (https://doi.org/10.2337/db08-0645>
73. 2008) Epigenetics and dermatological disease. Pharmacogenomics 9, 1835-1850.
< , G. W. M. (https://doi.org/10.2217/14622416.9.12.1835>
74. 2007) Histone H4 lysine 16 acetylation: From genome regulation to tumor progression. Med. Sci. (Paris) 23, 735-740. (in French)
< , B., Struhl, K. (https://doi.org/10.1051/medsci/20072389735>
75. 2009) MicroRNA-21 induces cell proliferation and invasion in esophageal squamous cell carcinoma. Mol. Med. Rep. 2, 235-239.
, Y., Ishiguro, H., Kuwabara, Y., Kimura, M., Mitsui, A., Ogawa, R., Katada, T., Harata, K., Tanaka, T., Shiozaki, M., Fujii, Y. (
76. 2007) Connections between epigenetic gene silencing and human disease. Mutat. Res. 618, 163-174.
< , T. J., Wallrath, L. L. (https://doi.org/10.1016/j.mrfmmm.2006.05.038>
77. 2009) Integrating the microRNome into the study of lung disease. Am. J. Resp. Crit. Care Med. 179, 4-10.
< , S. P., Hunter, M. G., Nuovo, G. J., Schmittgen, T. D., Gelinas, R., Galas, D., Marsh, C. B. (https://doi.org/10.1164/rccm.200807-1042PP>
78. 2009) MicroRNAs expressed during lung cancer development are expressed in human pseudoglandular lung embryogenesis. Oncology 76, 162-169.
< , A., Marrades, R. M., Vinolas, N., Quera, A., Agusti, C., Huerta, A., Ramirez, J., Torres, A., Monzo, M. (https://doi.org/10.1159/000201569>
79. 2009) Diet and epigenetics in colon cancer. World J. Gastroenterol. 15, 257-263.
< , M., Mutanen, M. (https://doi.org/10.3748/wjg.15.257>
80. 2008) Breathing dysfunction in Rett syndrome: Understanding epigenetic regulation of the respiratory network. Respir. Physiol. Neurobiol. 164, 55-63.
< , M., Katz, D. M. (https://doi.org/10.1016/j.resp.2008.04.005>
81. 2007) Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. J. Autoimmun. 28, 177-187.
< , T., Kis, J., Szereday, L., Engelmann, P., Farkas, K., Jalahej, H., Treszl, A. (https://doi.org/10.1016/j.jaut.2007.01.002>
82. 2007) Identification of novel high-frequency DNA methylation changes in breast cancer. PLoS ONE 2, e1314.
< , J. M., Budiman, M. A., Korshunova, Y., Maloney, R. K., Bedell, J. A., Citek R. W., Bacher, B., Peterson, S., Rohlfing, T., Hall, J., Brown, R., Lakey, N., Doerge, R. W., Martienssen, R. A., Leon, J., McPherson, J. D., Jeddeloh, J. A. (https://doi.org/10.1371/journal.pone.0001314>
83. 2009) MicroRNAs and cancer: the search begins! IEEE Trans. Inf. Technol. Biomed. 13, 67-77.
< , A., Reczko, M., Poirazi, P. (https://doi.org/10.1109/TITB.2008.2007086>
84. 2008) Association between dense CADM1 promoter methylation and reduced protein expression in high-grade CIN and cervical SCC. J. Pathol. 215, 388–397.
< , R. M., Henken, F. E., Snijders, P. J. F., ClaassenKramer, D., Berkhof, J., Helmerhorst, T. J. M., Heideman, D. A. M., Wilting, S. M., Murakami, Y., Ito, A., Meijer, C. J. L. M., Steenbergen, R. D. M. (https://doi.org/10.1002/path.2367>
85. 2008) Pharmaco(epi)genomics in ovarian cancer. Pharmacogenomics 9, 1825-1834.
< , A. J. W., Brown, R. (https://doi.org/10.2217/14622416.9.12.1825>
86. 2006) Epigenetic diagnostics of cancer – the application of DNA methylation markers. J. Appl. Genet. 47, 365-375.
< , J., Baer-Dubowska, W. (https://doi.org/10.1007/BF03194647>
87. 2007) Methylation profiles of CpG islands loci in major types of human cancer. J. Korean Med. Sci. 22, 311-317.
< , S.-Y., Kim, B.-H., Kim, J. H., Cho, N.-Y., Choi, M., Yu, E. J., Lee, S., Kang G. H. (https://doi.org/10.3346/jkms.2007.22.2.311>
88. 2008) The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann. Surg. Oncol. 15, 1968-1976.
< , Y. S., Jin, M. Y., Kim, Y. J., Yook, J. H., Kim, B. S., Jang, S. J. (https://doi.org/10.1245/s10434-008-9927-9>
89. 2008) Different methylation of the TNF-α promoter in cortex and substantia nigra: Implications for selective neuronal vulnerability. Neurobiol. Dis. 32, 521-527.
< , H. C., Evert, B. O., Kaut, O., Riederer, P. F., Waha, A., Wüllner, U. (https://doi.org/10.1016/j.nbd.2008.09.010>
90. 2007) Molecular profiling of chronic lymphocytic leukemia: genetics meets epigenetics to identify predisposing genes. Br. J. Haematol. 139, 744-752.
< , Ch., Byrd, J. C., Raval, A., Tanner, S. M., de la Chapelle A. (https://doi.org/10.1111/j.1365-2141.2007.06875.x>
91. 2008) GABAA receptor promoter hypermethylation in suicide brain: Implications for the involvement of epigenetic processes. Biol. Psych. 64, 645-652.
< , M. O., Du, L., Weaver, I. C. G., Palkovits, M., Faludi, G., Merali, Z., Szyf, M., Anisman, H. (https://doi.org/10.1016/j.biopsych.2008.05.028>
92. 2009) Exosomal microRNA: A diagnostic marker for lung cancer. Clin. Lung Cancer 10, 42-46.
< , G., Gercel-Taylor, C., Day, J. M., Taylor, D. D., Kloecker, G. H. (https://doi.org/10.3816/CLC.2009.n.006>
93. 2008) SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 177, 861-870.
< , S., Yang, S.-R., Kinnula, V.L., Rahman, I. (https://doi.org/10.1164/rccm.200708-1269OC>
94. 2007) Epigenetic events in malignant melanoma. Pigment Cell Res. 20, 92-111.
< , A., Bosserhoff, A.-K. (https://doi.org/10.1111/j.1600-0749.2007.00367.x>
95. 2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Hungtington’s disease. Proc. Natl. Acad. Sci. USA 103, 19176-19181.
< , H., Lee, J., Hagerty, S. W., Byoung, Y. S., McAlpin, S. E., Cormier, K. A., Smith, K. M., Ferrante, R. J. (https://doi.org/10.1073/pnas.0606373103>
96. 2009) Decreased expression of angiogenesis antagonist EFEMP1 in sporadic breast cancer is caused by aberrant promoter methylation and points to an impact of EFEMP1 as molecular biomarker. Int. J. Cancer 124, 1727–1735.
< , A., Ramser, J., Volkmann, J., Naehrig, J., Wiesmann, F., Betz, B., Hellebrand, H., Engert, S., Seitz, S., Kreutzfeld, R., Sasaki, T., Arnold, N., Schmutzler, R., Kiechle, M., Niederacher, D., Harbeck, N., Dahl, E., Meindl, A. (https://doi.org/10.1002/ijc.24108>
97. 2009) The role of microRNAs in gastrointestinal cancers. J. Gastroenterol. 44, Suppl. 19, 18-22.
< , Y., Suzuki, H., Hibi, T. (https://doi.org/10.1007/s00535-008-2285-3>
98. 2007) Implication of abnormal epigenetic patterns for human diseases. Eur. J. Hum. Genet. 15, 10-17.
< , C. B., Pimentel, M. M. G. (https://doi.org/10.1038/sj.ejhg.5201727>
99. 2007) Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancies. Gene Chromosome Canc. 46, 796-804.
< , T., Stengel, S., Goellner, S., Steinbach, D., Saluz, H. P. (https://doi.org/10.1002/gcc.20465>
100. 2009) MicroRNAs in the pathogenesis of neuroblastoma. Cancer Lett. 274, 10-15.
< , J. H., Horn, S., Schlierf, S., Schramm, A., Heukamp, L. C., Christiansen, H., Buettner, R., Berwanger, B., Eggert, A. (https://doi.org/10.1016/j.canlet.2008.06.010>
101. 2007) Zebularine inhibits human acute myeloid leukemia cell growth in vitro in association with p15INK4B demethylation and reexpression. Exp. Hematol. 35, 263-273.
< , S. A., Lakshimikuttysamma, A., Sheridan, D. P., Sanche, S. E., Geyer, C. R., DeCoteau, J. F. (https://doi.org/10.1016/j.exphem.2006.10.005>
102. 2009) Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc. Natl. Acad. Sci. USA 106, 1814-1819.
< , M. F., Hanniford, D., Menendez, S., Reavie, L., Zou, X., Alvarez-Diaz, S., Zakrzewski, J., Blochin, E., Rose, A., Bogunovic, D., Polsky, D., Wei, J., Lee, P., BelitskayaLevy, I., Bhardwaj, N., Osman, I., Hernando, E. (https://doi.org/10.1073/pnas.0808263106>
103. 2007) In situ detection of global DNA hypomethylation in exfoliative urine cytology of patients with suspected bladder cancer. Exp. Mol. Pathol. 82, 292-297.
< , H.-H., Schmiemann, V., Mueller, M., Kazimirek, M., Onofre, F., Neuhausen, A., Florl, A. L., Ackermann, R., Boecking, A., Schulz, W. A., Grote, H. J. (https://doi.org/10.1016/j.yexmp.2006.08.002>
104. 2007) Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia: A potential link between epigenetics and schizophrenia. J. Psychiatr. Res. 41, 1042-1046.
< , M., Sasaki, T., Imamura, A., Tsujita, T., Fuke, Ch., Umekage, T., Tochigi, M, Hiramatsu, K., Miyazaki, T., Oda, T., Sugimoto, J., Jinno, Y., Okazaki, Y. (https://doi.org/10.1016/j.jpsychires.2006.08.006>
105. 2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res. 647, 21-29.
< , J. A., Lange, C. A. (https://doi.org/10.1016/j.mrfmmm.2008.07.010>
106. 2008) Pharmacoepigenomics in colorectal cancer: A step forward in predicting prognosis and treatment response. Pharmacogenomics 9, 1903-1916.
< , K. M, Cleven, A. H. G., Weijenberg, M. P., Hughes, L. A. E., Herman, J. G., de Bruine, A. P., van Engeland, M. (https://doi.org/10.2217/14622416.9.12.1903>
107. 2007) MicroRNAs in disease and potential therapeutic applications. Mol. Ther. 15, 2070-2079.
< , H. S., Rossi, J. J., Sætrom, P. (https://doi.org/10.1038/sj.mt.6300311>
108. 2008) Can the rDNA methylation pattern be used as a marker for Alzheimer’s disease? Alzheimers Dement. 4, 438-442.
< , M. A., Batista, L. M., Lourenco, R. D., Tavares, W. M., Bertolucci, P. H. F., Rigolin, V. D. S., Payao, S. L. M., Smith, M. D. C. (https://doi.org/10.1016/j.jalz.2008.03.010>
109. 2008) Genetic and epigenetic contributions to human nutrition and health: Managing genome-diet interactions. J. Am. Diet Assoc. 108, 1480-1487.
< J. P., Caudill, M. A. (https://doi.org/10.1016/j.jada.2008.06.430>
110. 2009) An epigenetic marker panel for screening and prognostic prediction of ovarian cancer. Int. J. Cancer 124, 387-393.
< , H. Y., Lai, H. C., Lin, Y. W., Chou, Y. C., Liu, C. Y., Yu, M. H. (https://doi.org/10.1002/ijc.23957>
111. 2007) Epigenetic aberration of the human REELIN gene in psychiatric disorders. Mol. Psychiatry 12, 593-600.
< , Y., Kunugi, H., Ohashi, J., Hohjoh, H. (https://doi.org/10.1038/sj.mp.4001965>
112. 2009) A new link between epigenetic progenitor lesions in cancer and the dynamics of signal transduction. Cell Cycle 8, 383-390.
< , W., Levchenko, A., Feinberg, A. P. (https://doi.org/10.4161/cc.8.3.7542>
113. 2007) Methylation status of the reelin promoter region in the brain of schizophrenic patients. Biol. Psychiatry 63, 530-533.
< , M., Iwamoto, K., Bundo, M., Komori, A., Sasaki, T., Kato, N., Kato, T. (https://doi.org/10.1016/j.biopsych.2007.07.003>
114. 2009) MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther. 16, 206-216.
< , A. W., Fulgham, P., Jay, C., Chen, P., Khalil, I., Liu, S., Senzer, N., Eklund, A. C., Han, J., Nemunaitis, J. (https://doi.org/10.1038/cgt.2008.77>
115. Turunen, M. P., Aavik, E., Ylä-Herttuala, S. (2009) Epigenetics and atherosclerosis. Biochim. Biophys. Acta,
<https://doi.org/10.1016/j.bbagen.2009.02.008>
116. 2006) Genetic and epigenetic biomarkers in cancer diagnosis and identifying high risk population. Crit. Rev. Oncol. Hematol. 60, 9-18.
< , M., Manne, U. (https://doi.org/10.1016/j.critrevonc.2006.04.002>
117. 2006) Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arth. Rheum. 54, 2271-2279.
< , Y., Fan, P.-S., Kahaleh, B. (https://doi.org/10.1002/art.21948>
118. 2009) Is epigenetics an important link between early life events and adult disease? Horm. Res. 71, 13-16.
, R. A. (
119. 2008) Rapid detection of methylation change at H19 in human imprinting disorders using methylation-sensitive high-resolution melting. Hum. Mutat. 29, 1255-1260.
< , T. K., Dobrovic, A., Algar, E. M. (https://doi.org/10.1002/humu.20779>
120. 2009) Epigenetics: an important challenge for ICP-MS in metallomics studies. Anal. Bioanal. Chem. 393, 481-486.
< , K., Wrobel, K., Caruso, J. A. (https://doi.org/10.1007/s00216-008-2472-3>
121. 2009) Detection of miR-106a in gastric carcinoma and its clinical significance. Clin. Chim. Acta 400, 97-102.
< , B., Guo, J., Miao, Y., Jiang, Z., Huan, R., Zhang, Y., Li, D., Zhong, J. (https://doi.org/10.1016/j.cca.2008.10.021>
122. 2009) Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics 25, 430-434.
< , F. X., Li, M., Balch, C., Thomson, M., Fan, M. Y., Liu, Y., Hammond, S. M., Kim, S., Nephew, K. P. (https://doi.org/10.1093/bioinformatics/btn646>
123. 2008) The reciprocal modulation between epigenetic and microRNA and the application for treatment of malignant tumors. Prog. Biochem. Biophys. 35, 1343-1350.
, Y. M., Guo, Y. H., Liu, L., Cai, R., Qian, C. (
124. 2008) Expression and promoter methylation status of mismatch repair gene hMLH1 and hMSH2 in epithelial ovarian cancer. Aust. N. Z. J. Obstet. Gynaecol. 48, 505-509.
< , H., Zhang, S. Q., Cui, J., Zhang, A. F., Shen, L., Yu, H. (https://doi.org/10.1111/j.1479-828X.2008.00892.x>
125. 2008) Epigenetic aberrations and targeted epigenetic therapy of esophageal cancer. Curr. Cancer Drug Targets 8, 509-521.
< , R., Casson, A. G. (https://doi.org/10.2174/156800908785699306>
126. 2009) Down-regulation of Rap1GAP via promoter hypermethylation promotes melanoma cell proliferation, survival, and migration. Cancer Res. 69, 449-457.
< , H., Gao, L., Feng, Y., Yuan, L., Zhao, H., Cornelius, L. A. (https://doi.org/10.1158/0008-5472.CAN-08-2399>
127. 2008) DNA methylation in T cells from idiopathic lupus and drug-induced lupus patients. Autoimmun. Rev. 7, 376-383.
< , Y., Lu, Q. (https://doi.org/10.1016/j.autrev.2008.03.003>
128. 2007) Use of DNA methylation for cancer detection and molecular classification. J. Biochem. Mol. Biol. 40, 135-141.
, J., Yao, X. (
129. 2009) Use of DNA methylation for cancer detection: Promises and challenges. Int. J. Biochem. Cell Biol. 41, 147-154.
< , J., Yao, X. (https://doi.org/10.1016/j.biocel.2008.09.003>
130. 2009) An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophr. Res. 111, 115-122.
< , A., Veldic, M., Puri, N. V., Kadriu, B., Caruncho, H., Loza, I., Sershen, H., Lajtha, A., Smith, R. C., Guidotti, A., Davis, J. M., Costa, E. (https://doi.org/10.1016/j.schres.2009.03.020>