Fol. Biol. 2010, 56, 135-148

https://doi.org/10.14712/fb2010056040135

Intracellular Signalling Pathways and Mood Disorders

Zdeněk Fišar, J. Hroudová

Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Department of Psychiatry, Prague, Czech Republic

Received June 2009
Accepted October 2009

References

1. aan het Rot, M., Mathew, S. J., Charney, D. S. (2009) Neurobiological mechanisms in major depressive disorder. CMAJ 180, 305-313. <https://doi.org/10.1503/cmaj.080697>
2. Bachmann, R. F., Schloesser, R. J., Gould, T. D., Manji, H. K. (2005) Mood stabilizers target cellular plasticity and resilience cascades: implications for the development of novel therapeutics. Mol. Neurobiol. 32, 173-202. <https://doi.org/10.1385/MN:32:2:173>
3. Balon, R. (1989) Biological predictors of antidepressant treatment outcome. Clin. Neuropharmacol. 12, 195-214. <https://doi.org/10.1097/00002826-198906000-00004>
4. Battaini, F. (2001) Protein kinase C isoforms as therapeutic targets in nervous system disease states. Pharmacol. Res. 44, 353-361. <https://doi.org/10.1006/phrs.2001.0893>
5. Berridge, M. J., Lipp, P., Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11-21. <https://doi.org/10.1038/35036035>
6. Berridge, M. J. (2005) Unlocking the secrets of cell signaling. Annu. Rev. Physiol. 67, 1-21. <https://doi.org/10.1146/annurev.physiol.67.040103.152647>
7. Blendy, J. A. (2006) The role of CREB in depression and antidepressant treatment. Biol. Psychiatry 59, 1144-1150. <https://doi.org/10.1016/j.biopsych.2005.11.003>
8. Bocchio-Chiavetto, L., Zanardini, R., Bortolomasi, M., Abate, M., Segala, M., Giacopuzzi, M., Riva, M. A., Marchina, E., Pasqualetti, P., Perez, J., Gennarelli, M. (2006) Electroconvulsive Therapy (ECT) increases serum Brain Derived Neurotrophic Factor (BDNF) in drug resistant depressed patients. Eur. Neuropsychopharmacol. 16, 620-624. <https://doi.org/10.1016/j.euroneuro.2006.04.010>
9. Bown, C. D., Wang, J. F., Chen, B., Young, L. T. (2002) Regulation of ER stress proteins by valproate: therapeutic implications. Bipolar Disord. 4, 145-151. <https://doi.org/10.1034/j.1399-5618.2002.t01-1-40201.x>
10. Carlezon, W. A. Jr., Duman, R. S., Nestler, E. J. (2005) The many faces of CREB. Trends Neurosci. 28, 436-445. <https://doi.org/10.1016/j.tins.2005.06.005>
11. Chen, G., Zeng, W.-Z., Yuan, P.-X., Huang, L.-D., Jiang, Y.M., Zhao, Z.-H., Manji, H. K. (1999) The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein Bcl2 in the CNS. J. Neurochem. 72, 879-882. <https://doi.org/10.1046/j.1471-4159.1999.720879.x>
12. Chiavegatto S, Nelson, R. J. (2003) Interaction of nitric oxide and serotonin in aggressive behavior. Horm. Behav. 44, 233-241. <https://doi.org/10.1016/j.yhbeh.2003.02.002>
13. Chipuk, J. E., Green, D. R. (2008) How do Bcl2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18, 157-164. <https://doi.org/10.1016/j.tcb.2008.01.007>
14. Clevers, H. (2006) Wnt/β-catenin signaling in development and disease. Cell 127, 469-480. <https://doi.org/10.1016/j.cell.2006.10.018>
15. Cowan, K. J., Storey, K. B. (2003) Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J. Exp. Biol. 206, 1107-1115. <https://doi.org/10.1242/jeb.00220>
16. Duman, R. S., Heninger, G. R., Nestler, E. J. (1997) A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54, 597-606. <https://doi.org/10.1001/archpsyc.1997.01830190015002>
17. Duman, R. S. (2002) Synaptic plasticity and mood disorders. Mol. Psychiatry 7, S29-S34. <https://doi.org/10.1038/sj.mp.4001016>
18. Einat, H., Manji, H. K. (2006) Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biol. Psychiatry 59, 1160-1171. <https://doi.org/10.1016/j.biopsych.2005.11.004>
19. Fatemi, S. H., Folsom, T. D. (2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr. Bull. 35, 528-548. <https://doi.org/10.1093/schbul/sbn187>
20. Fišar, Z. (1998) Biochemical Hypotheses of Affective Disorders. Galén, Prague. (in Czech)
21. Fišar, Z., Raboch, J. (2008) Depression, antidepressants, and peripheral blood components. Neuroendocrinol. Lett. 29, 17-28.
22. Fišar, Z., Jirák, R., Papežová, H., Bob, P. (2009) Selected Chapters in Biological Psychiatry. 2nd ed., Grada, Prague. (in Czech)
23. Fuerer, C., Nusse, R., Ten Berge, D. (2008) Wnt signalling in development and disease. EMBO Rep. 9, 134-138. <https://doi.org/10.1038/sj.embor.7401159>
24. Gass, P., Riva, M. A. (2007) CREB, neurogenesis and depression. Bioessays 29, 957-961. <https://doi.org/10.1002/bies.20658>
25. Gould, C. M., Newton, A. C. (2008) The life and death of protein kinase C. Curr. Drug Targets 9, 614-625. <https://doi.org/10.2174/138945008785132411>
26. Gould, T. D., Manji, H. K. (2005) Glycogen synthase kinase3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30, 1223-1237. <https://doi.org/10.1038/sj.npp.1300731>
27. Green, D. R., Kroemer, G. (2004) The pathophysiology of mitochondrial cell death. Science 305, 626-629. <https://doi.org/10.1126/science.1099320>
28. Hayden, M. S., Ghosh, S. (2004) Signaling to NF-κB. Genes Dev. 18, 2195-2224. <https://doi.org/10.1101/gad.1228704>
29. Ikenouchi-Sugita, A., Yoshimura, R., Hori, H., UmeneNakano, W., Ueda, N., Nakamura, J. (2009) Effects of antidepressants on plasma metabolites of nitric oxide in major depressive disorder: Comparison between milnacipran and paroxetine. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 33, 1451-1453. <https://doi.org/10.1016/j.pnpbp.2009.07.028>
30. Jacobs, B. L. (2002) Adult brain neurogenesis and depression. Brain Behav. Immun. 16, 602-609. <https://doi.org/10.1016/S0889-1591(02)00015-6>
31. Jefferys, D., Funder, J. (1996) Nitric oxide modulates retention of immobility in the forced swimming test in rats. Eur. J. Pharmacol. 295, 131-135. <https://doi.org/10.1016/0014-2999(95)00655-9>
32. Joca, S. R. L., Guimarães, F. S. (2006) Inhibition of neuronal nitric oxide synthase in the rat hippocampus induces antidepressant-like effects. Psychopharmacology (Berl.) 185, 298-305. <https://doi.org/10.1007/s00213-006-0326-2>
33. Joca, S. R. L., Ferreira, F. R., Guimarães, F. S. (2007) Modulation of stress consequences by hippocampal monoaminergic, glutamatergic and nitrergic neurotransmitter systems. Stress 10, 227-249. <https://doi.org/10.1080/10253890701223130>
34. Joyce, P. R., Paykel, E. S. (1989) Predictors of drug response in depression. Arch. Gen. Psychiatry 46, 89-99. <https://doi.org/10.1001/archpsyc.1989.01810010091014>
35. Kann, O., Kovács, R. (2007) Mitochondria and neuronal activity. Am. J. Physiol. Cell Physiol. 292, C641-C657. <https://doi.org/10.1152/ajpcell.00222.2006>
36. Kato, T., Kato, N. (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord. 2, 180-190. <https://doi.org/10.1034/j.1399-5618.2000.020305.x>
37. Kato, T. (2007) Mitochondrial dysfunction as the molecular basis of bipolar disorder: therapeutic implications. CNS Drugs 21, 1-11. <https://doi.org/10.2165/00023210-200721010-00001>
38. Kato, T. (2008) Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder. Cell Calcium 44, 92-102. <https://doi.org/10.1016/j.ceca.2007.11.005>
39. Kempermann, G., Kronenberg, G. (2003) Depressed new neurons – adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol. Psychiatry 54, 499-503. <https://doi.org/10.1016/S0006-3223(03)00319-6>
40. Kim, A. H., Bonni, A. (2007) Thinking within the D box: initial identification of Cdh1-APC substrates in the nervous system. Mol. Cell. Neurosci. 34, 281-287. <https://doi.org/10.1016/j.mcn.2006.11.019>
41. Kim, Y.-K., Paik, J.-W., Lee, S.-W., Yoon, D., Han, C., Lee, B.-H. (2006) Increased plasma nitric oxide level associated with suicide attempt in depressive patients. Prog. NeuroPsychopharmacol. Biol. Psychiatry 30, 1091-1096. <https://doi.org/10.1016/j.pnpbp.2006.04.008>
42. Koenigs, M., Grafoman, J. (2009) The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav. Brain Res. 201, 239-243. <https://doi.org/10.1016/j.bbr.2009.03.004>
43. Kostrouchová, M., Kostrouch, Z., Kostrouchová, M. (2007) Valproic acid, a molecular lead to multiple regulatory pathways. Folia Biol. (Praha) 53, 37-49.
44. Kuhn, M. (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ. Res. 93, 700-709. <https://doi.org/10.1161/01.RES.0000094745.28948.4D>
45. Leber, B., Lin, J., Andrews, D. W. (2007) Embedded together: the life and death consequences of interaction of the Bcl2 family with membranes. Apoptosis 12, 897-911. <https://doi.org/10.1007/s10495-007-0746-4>
46. Lee, B.-H., Lee, S.-W., Yoon, D., Lee, H.-J., Yang, J.-C., Shim, S.-H., Kim, D.-H., Ryu, S.-H., Han, C., Kim, Y.-K. (2006) Increased plasma nitric oxide metabolites in suicide attempters. Neuropsychobiology 53, 127-132. <https://doi.org/10.1159/000092542>
47. Lee, E., Salic, A., Krüger, R., Heinrich, R., Kirschner, M. W. (2003) The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 1, E10. <https://doi.org/10.1371/journal.pbio.0000010>
48. Lie, D. C., Colamarino, S. A., Song, H. J., Désiré, L., Mira, H., Consiglio, A., Lein, E. S., Jessberger, S., Lansford, H., Dearie, A. R., Gage, F. H. (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370-1375. <https://doi.org/10.1038/nature04108>
49. Liu, X., Rubin, J. S., Kimmel, A. R. (2005) Rapid, Wnt-induced changes in GSK3β associations that regulate β-catenin stabilization are mediated by Gα proteins. Curr. Biol. 15, 1989-1997. <https://doi.org/10.1016/j.cub.2005.10.050>
50. Maes, M., Yirmyia, R., Noraberg, J., Brene, S., Hibbeln, J., Perini, G., Kubera, M., Bob, P. Lerer, B., Maj, M. (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab. Brain Dis. 24, 27-53. <https://doi.org/10.1007/s11011-008-9118-1>
51. Mattson, M. P., Kroemer, G. (2003) Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol. Med. 9, 196-205. <https://doi.org/10.1016/S1471-4914(03)00046-7>
52. Miyamoto, E. (2006) Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J. Pharmacol. Sci. 100, 433-442. <https://doi.org/10.1254/jphs.CPJ06007X>
53. Newton, S. S., Thome, J., Wallace, T. L., Shirayama, Y., Schlesinger, L., Sakai, N., Chen, J., Neve, R., Nestler, E. J., Duman, R. S. (2002) Inhibition of cAMP response elementbinding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J. Neurosci. 22, 10883-10890. <https://doi.org/10.1523/JNEUROSCI.22-24-10883.2002>
54. Nibuya, M., Nestler, E. J., Duman, R. S. (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J. Neurosci. 16, 2365-2372. <https://doi.org/10.1523/JNEUROSCI.16-07-02365.1996>
55. Oliveira, R. M. W., Guimarães, F. S., Deakin, J. F. W. (2008) Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders. Braz. J. Med. Biol. Res. 41, 333-341. <https://doi.org/10.1590/S0100-879X2008000400012>
56. Pascale, A., Amadio, M., Govoni, S., Battaini, F. (2007) The aging brain, a key target for the future: the protein kinase C involvement. Pharmacol. Res. 55, 560-569. <https://doi.org/10.1016/j.phrs.2007.04.013>
57. Paul, I. A., Skolnick, P. (2003) Glutamate and depression. Clinical and preclinical studies. Ann. N. Y. Acad. Sci. 1003, 250-272. <https://doi.org/10.1196/annals.1300.016>
58. Peineau, S., Bradley, C., Taghibiglou, C., Doherty, A., Bortolotto, Z. A., Wang, Y. T., Collingridge, G. L. (2008) The role of GSK3 in synaptic plasticity. Br. J. Pharmacol. 153, S428-S437. <https://doi.org/10.1038/bjp.2008.2>
59. Phiel, C. J., Zhang, F., Huang, E. Y., Guenther, M. G., Lazar, M. A., Klein, P. S. (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36734-36741. <https://doi.org/10.1074/jbc.M101287200>
60. Saito, N., Shirai, Y. (2002) Protein kinase Cγ (PKCγ): function of neuron specific isotype. J. Biochem. 132, 683-687. <https://doi.org/10.1093/oxfordjournals.jbchem.a003274>
61. Sands, W. A., Palmer, T. M. (2008) Regulating gene transcription in response to cyclic AMP elevation. Cell. Signal. 20, 460-466. <https://doi.org/10.1016/j.cellsig.2007.10.005>
62. Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C., Hen, R. (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805-809. <https://doi.org/10.1126/science.1083328>
63. Shaltiel, G., Chen, G., Manji, H. K. (2007) Neurotrophic signaling cascades in the pathophysiology and treatment of bipolar disorder. Curr. Opin. Pharmacol. 7, 22-26. <https://doi.org/10.1016/j.coph.2006.07.005>
64. Snyder, S. H., Ferris, C. D. (2000) Novel neurotransmitters and their neuropsychiatric relevance. Am. J. Psychiatry 157, 1738-1751. <https://doi.org/10.1176/appi.ajp.157.11.1738>
65. Soderling, T. R. (1999) The Ca-calmodulin-dependent protein kinase cascade. Trends Biochem. Sci. 24, 232-236. <https://doi.org/10.1016/S0968-0004(99)01383-3>
66. Steinberg, S. F. (2008) Structural basis of protein kinase C isoform function. Physiol. Rev. 88, 1341-1378. <https://doi.org/10.1152/physrev.00034.2007>
67. Stewart, A. J., Morgan, K., Farquharson, C., Millar, R. P. (2007) Phospholipase C-eta enzymes as putative protein kinase C and Ca2+ signalling components in neuronal and neuroendocrine tissues. Neuroendocrinology 86, 243-248. <https://doi.org/10.1159/000107795>
68. Stork, C., Renshaw, P. F. (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol. Psychiatry 10, 900-919. <https://doi.org/10.1038/sj.mp.4001711>
69. Subramaniam, S., Unsicker, K. (2006) Extracellular signalregulated kinase as an inducer of non-apoptotic neuronal death. Neuroscience 138, 1055-1065. <https://doi.org/10.1016/j.neuroscience.2005.12.013>
70. Suzuki, E., Yagi, G., Nakaki, T., Kanba, S., Asai, M. (2001) Elevated plasma nitrate levels in depressive states. J. Affect. Disord. 63, 221-224. <https://doi.org/10.1016/S0165-0327(00)00164-6>
71. Tagliaferro, P., Ramos, A. J., Lopez-Costa, J. J., López, E. M., Brusco, A. (2003) Changes in the postnatal development on nitric oxide system induced by serotonin depletion. Dev. Brain Res. 146, 39-49. <https://doi.org/10.1016/j.devbrainres.2003.09.006>
72. Tardito, D., Perez, J., Tiraboschi, E., Musazzi, L., Racagni, G., Popoli, M. (2006) Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview. Pharmacol. Rev. 58, 115-134. <https://doi.org/10.1124/pr.58.1.7>
73. Taylor, S. S., Kim, C., Vigil, D., Haste, N. M., Yang, J., Wu, J., Anand, G. S. (2005) Dynamics of signaling by PKA. Biochim. Biophys. Acta 1754, 25-37. <https://doi.org/10.1016/j.bbapap.2005.08.024>
74. Thome, J., Sakai, N., Shin, K., Steffen, C., Zhang, Y. J., Impey, S., Storm, D., Duman, R. S. (2000) cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J. Neurosci. 20, 4030-4036. <https://doi.org/10.1523/JNEUROSCI.20-11-04030.2000>
75. Wada, T., Penninger, J. M. (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23, 2838-2849. <https://doi.org/10.1038/sj.onc.1207556>
76. Watson, F. L., Heerssen, H. M., Bhattacharyya, A., Klesse, L., Lin, M. Z., Segal, R. A. (2001) Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat. Neurosci. 4, 981-988. <https://doi.org/10.1038/nn720>
77. Wu, H., Peisley, A., Graef, I. A., Crabtree, G. R. (2007) NFAT signaling and the invention of vertebrates. Trends Cell Biol. 17, 251-260. <https://doi.org/10.1016/j.tcb.2007.04.006>
78. Zarate, C. A. Jr., Singh, J., Manji, H. K. (2006) Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol. Psychiatry 59, 1006-1020. <https://doi.org/10.1016/j.biopsych.2005.10.021>
79. Zhou, Q.-G., Hu, Y., Hua, Y., Hu, M., Luo, C.-X., Han, X., Zhu, X.-J., Wang, B., Xu, J.-S., Zhu, D.-Y. (2007) Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J. Neurochem. 103, 1843-1854. <https://doi.org/10.1111/j.1471-4159.2007.04914.x>
80. Zhu, X. J., Hua, Y., Jiang, J., Zhou, Q. G., Luo, C. X., Han, X., Lu, Y. M., Zhu, D. Y. (2006) Neuronal nitric oxide synthase-derived nitric oxide inhibits neurogenesis in the adult dentate gyrus by down-regulating cyclic AMP response element binding protein phosphorylation. Neuroscience 141, 827-836. <https://doi.org/10.1016/j.neuroscience.2006.04.032>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive