Fol. Biol. 2010, 56, 135-148
https://doi.org/10.14712/fb2010056040135
Intracellular Signalling Pathways and Mood Disorders
References
1. 2009) Neurobiological mechanisms in major depressive disorder. CMAJ 180, 305-313.
< , M., Mathew, S. J., Charney, D. S. (https://doi.org/10.1503/cmaj.080697>
2. 2005) Mood stabilizers target cellular plasticity and resilience cascades: implications for the development of novel therapeutics. Mol. Neurobiol. 32, 173-202.
< , R. F., Schloesser, R. J., Gould, T. D., Manji, H. K. (https://doi.org/10.1385/MN:32:2:173>
3. 1989) Biological predictors of antidepressant treatment outcome. Clin. Neuropharmacol. 12, 195-214.
< , R. (https://doi.org/10.1097/00002826-198906000-00004>
4. 2001) Protein kinase C isoforms as therapeutic targets in nervous system disease states. Pharmacol. Res. 44, 353-361.
< , F. (https://doi.org/10.1006/phrs.2001.0893>
5. 2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11-21.
< , M. J., Lipp, P., Bootman, M. D. (https://doi.org/10.1038/35036035>
6. 2005) Unlocking the secrets of cell signaling. Annu. Rev. Physiol. 67, 1-21.
< , M. J. (https://doi.org/10.1146/annurev.physiol.67.040103.152647>
7. 2006) The role of CREB in depression and antidepressant treatment. Biol. Psychiatry 59, 1144-1150.
< , J. A. (https://doi.org/10.1016/j.biopsych.2005.11.003>
8. 2006) Electroconvulsive Therapy (ECT) increases serum Brain Derived Neurotrophic Factor (BDNF) in drug resistant depressed patients. Eur. Neuropsychopharmacol. 16, 620-624.
< , L., Zanardini, R., Bortolomasi, M., Abate, M., Segala, M., Giacopuzzi, M., Riva, M. A., Marchina, E., Pasqualetti, P., Perez, J., Gennarelli, M. (https://doi.org/10.1016/j.euroneuro.2006.04.010>
9. 2002) Regulation of ER stress proteins by valproate: therapeutic implications. Bipolar Disord. 4, 145-151.
< , C. D., Wang, J. F., Chen, B., Young, L. T. (https://doi.org/10.1034/j.1399-5618.2002.t01-1-40201.x>
10. 2005) The many faces of CREB. Trends Neurosci. 28, 436-445.
< , W. A. Jr., Duman, R. S., Nestler, E. J. (https://doi.org/10.1016/j.tins.2005.06.005>
11. 1999) The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein Bcl2 in the CNS. J. Neurochem. 72, 879-882.
< , G., Zeng, W.-Z., Yuan, P.-X., Huang, L.-D., Jiang, Y.M., Zhao, Z.-H., Manji, H. K. (https://doi.org/10.1046/j.1471-4159.1999.720879.x>
12. 2003) Interaction of nitric oxide and serotonin in aggressive behavior. Horm. Behav. 44, 233-241.
< S, Nelson, R. J. (https://doi.org/10.1016/j.yhbeh.2003.02.002>
13. 2008) How do Bcl2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18, 157-164.
< , J. E., Green, D. R. (https://doi.org/10.1016/j.tcb.2008.01.007>
14. 2006) Wnt/β-catenin signaling in development and disease. Cell 127, 469-480.
< , H. (https://doi.org/10.1016/j.cell.2006.10.018>
15. 2003) Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J. Exp. Biol. 206, 1107-1115.
< , K. J., Storey, K. B. (https://doi.org/10.1242/jeb.00220>
16. 1997) A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54, 597-606.
< , R. S., Heninger, G. R., Nestler, E. J. (https://doi.org/10.1001/archpsyc.1997.01830190015002>
17. 2002) Synaptic plasticity and mood disorders. Mol. Psychiatry 7, S29-S34.
< , R. S. (https://doi.org/10.1038/sj.mp.4001016>
18. 2006) Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biol. Psychiatry 59, 1160-1171.
< , H., Manji, H. K. (https://doi.org/10.1016/j.biopsych.2005.11.004>
19. 2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr. Bull. 35, 528-548.
< , S. H., Folsom, T. D. (https://doi.org/10.1093/schbul/sbn187>
20. Fišar, Z. (1998) Biochemical Hypotheses of Affective Disorders. Galén, Prague. (in Czech)
21. 2008) Depression, antidepressants, and peripheral blood components. Neuroendocrinol. Lett. 29, 17-28.
, Z., Raboch, J. (
22. Fišar, Z., Jirák, R., Papežová, H., Bob, P. (2009) Selected Chapters in Biological Psychiatry. 2nd ed., Grada, Prague. (in Czech)
23. 2008) Wnt signalling in development and disease. EMBO Rep. 9, 134-138.
< , C., Nusse, R., Ten Berge, D. (https://doi.org/10.1038/sj.embor.7401159>
24. 2007) CREB, neurogenesis and depression. Bioessays 29, 957-961.
< , P., Riva, M. A. (https://doi.org/10.1002/bies.20658>
25. 2008) The life and death of protein kinase C. Curr. Drug Targets 9, 614-625.
< , C. M., Newton, A. C. (https://doi.org/10.2174/138945008785132411>
26. 2005) Glycogen synthase kinase3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30, 1223-1237.
< , T. D., Manji, H. K. (https://doi.org/10.1038/sj.npp.1300731>
27. 2004) The pathophysiology of mitochondrial cell death. Science 305, 626-629.
< , D. R., Kroemer, G. (https://doi.org/10.1126/science.1099320>
28. 2004) Signaling to NF-κB. Genes Dev. 18, 2195-2224.
< , M. S., Ghosh, S. (https://doi.org/10.1101/gad.1228704>
29. 2009) Effects of antidepressants on plasma metabolites of nitric oxide in major depressive disorder: Comparison between milnacipran and paroxetine. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 33, 1451-1453.
< , A., Yoshimura, R., Hori, H., UmeneNakano, W., Ueda, N., Nakamura, J. (https://doi.org/10.1016/j.pnpbp.2009.07.028>
30. 2002) Adult brain neurogenesis and depression. Brain Behav. Immun. 16, 602-609.
< , B. L. (https://doi.org/10.1016/S0889-1591(02)00015-6>
31. 1996) Nitric oxide modulates retention of immobility in the forced swimming test in rats. Eur. J. Pharmacol. 295, 131-135.
< , D., Funder, J. (https://doi.org/10.1016/0014-2999(95)00655-9>
32. 2006) Inhibition of neuronal nitric oxide synthase in the rat hippocampus induces antidepressant-like effects. Psychopharmacology (Berl.) 185, 298-305.
< , S. R. L., Guimarães, F. S. (https://doi.org/10.1007/s00213-006-0326-2>
33. 2007) Modulation of stress consequences by hippocampal monoaminergic, glutamatergic and nitrergic neurotransmitter systems. Stress 10, 227-249.
< , S. R. L., Ferreira, F. R., Guimarães, F. S. (https://doi.org/10.1080/10253890701223130>
34. 1989) Predictors of drug response in depression. Arch. Gen. Psychiatry 46, 89-99.
< , P. R., Paykel, E. S. (https://doi.org/10.1001/archpsyc.1989.01810010091014>
35. 2007) Mitochondria and neuronal activity. Am. J. Physiol. Cell Physiol. 292, C641-C657.
< , O., Kovács, R. (https://doi.org/10.1152/ajpcell.00222.2006>
36. 2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord. 2, 180-190.
< , T., Kato, N. (https://doi.org/10.1034/j.1399-5618.2000.020305.x>
37. 2007) Mitochondrial dysfunction as the molecular basis of bipolar disorder: therapeutic implications. CNS Drugs 21, 1-11.
< , T. (https://doi.org/10.2165/00023210-200721010-00001>
38. 2008) Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder. Cell Calcium 44, 92-102.
< , T. (https://doi.org/10.1016/j.ceca.2007.11.005>
39. 2003) Depressed new neurons – adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol. Psychiatry 54, 499-503.
< , G., Kronenberg, G. (https://doi.org/10.1016/S0006-3223(03)00319-6>
40. 2007) Thinking within the D box: initial identification of Cdh1-APC substrates in the nervous system. Mol. Cell. Neurosci. 34, 281-287.
< , A. H., Bonni, A. (https://doi.org/10.1016/j.mcn.2006.11.019>
41. 2006) Increased plasma nitric oxide level associated with suicide attempt in depressive patients. Prog. NeuroPsychopharmacol. Biol. Psychiatry 30, 1091-1096.
< , Y.-K., Paik, J.-W., Lee, S.-W., Yoon, D., Han, C., Lee, B.-H. (https://doi.org/10.1016/j.pnpbp.2006.04.008>
42. 2009) The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav. Brain Res. 201, 239-243.
< , M., Grafoman, J. (https://doi.org/10.1016/j.bbr.2009.03.004>
43. 2007) Valproic acid, a molecular lead to multiple regulatory pathways. Folia Biol. (Praha) 53, 37-49.
, M., Kostrouch, Z., Kostrouchová, M. (
44. 2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ. Res. 93, 700-709.
< , M. (https://doi.org/10.1161/01.RES.0000094745.28948.4D>
45. 2007) Embedded together: the life and death consequences of interaction of the Bcl2 family with membranes. Apoptosis 12, 897-911.
< , B., Lin, J., Andrews, D. W. (https://doi.org/10.1007/s10495-007-0746-4>
46. 2006) Increased plasma nitric oxide metabolites in suicide attempters. Neuropsychobiology 53, 127-132.
< , B.-H., Lee, S.-W., Yoon, D., Lee, H.-J., Yang, J.-C., Shim, S.-H., Kim, D.-H., Ryu, S.-H., Han, C., Kim, Y.-K. (https://doi.org/10.1159/000092542>
47. 2003) The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 1, E10.
< , E., Salic, A., Krüger, R., Heinrich, R., Kirschner, M. W. (https://doi.org/10.1371/journal.pbio.0000010>
48. 2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370-1375.
< , D. C., Colamarino, S. A., Song, H. J., Désiré, L., Mira, H., Consiglio, A., Lein, E. S., Jessberger, S., Lansford, H., Dearie, A. R., Gage, F. H. (https://doi.org/10.1038/nature04108>
49. 2005) Rapid, Wnt-induced changes in GSK3β associations that regulate β-catenin stabilization are mediated by Gα proteins. Curr. Biol. 15, 1989-1997.
< , X., Rubin, J. S., Kimmel, A. R. (https://doi.org/10.1016/j.cub.2005.10.050>
50. 2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab. Brain Dis. 24, 27-53.
< , M., Yirmyia, R., Noraberg, J., Brene, S., Hibbeln, J., Perini, G., Kubera, M., Bob, P. Lerer, B., Maj, M. (https://doi.org/10.1007/s11011-008-9118-1>
51. 2003) Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol. Med. 9, 196-205.
< , M. P., Kroemer, G. (https://doi.org/10.1016/S1471-4914(03)00046-7>
52. 2006) Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J. Pharmacol. Sci. 100, 433-442.
< , E. (https://doi.org/10.1254/jphs.CPJ06007X>
53. 2002) Inhibition of cAMP response elementbinding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J. Neurosci. 22, 10883-10890.
< , S. S., Thome, J., Wallace, T. L., Shirayama, Y., Schlesinger, L., Sakai, N., Chen, J., Neve, R., Nestler, E. J., Duman, R. S. (https://doi.org/10.1523/JNEUROSCI.22-24-10883.2002>
54. 1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J. Neurosci. 16, 2365-2372.
< , M., Nestler, E. J., Duman, R. S. (https://doi.org/10.1523/JNEUROSCI.16-07-02365.1996>
55. 2008) Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders. Braz. J. Med. Biol. Res. 41, 333-341.
< , R. M. W., Guimarães, F. S., Deakin, J. F. W. (https://doi.org/10.1590/S0100-879X2008000400012>
56. 2007) The aging brain, a key target for the future: the protein kinase C involvement. Pharmacol. Res. 55, 560-569.
< , A., Amadio, M., Govoni, S., Battaini, F. (https://doi.org/10.1016/j.phrs.2007.04.013>
57. 2003) Glutamate and depression. Clinical and preclinical studies. Ann. N. Y. Acad. Sci. 1003, 250-272.
< , I. A., Skolnick, P. (https://doi.org/10.1196/annals.1300.016>
58. 2008) The role of GSK3 in synaptic plasticity. Br. J. Pharmacol. 153, S428-S437.
< , S., Bradley, C., Taghibiglou, C., Doherty, A., Bortolotto, Z. A., Wang, Y. T., Collingridge, G. L. (https://doi.org/10.1038/bjp.2008.2>
59. 2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36734-36741.
< , C. J., Zhang, F., Huang, E. Y., Guenther, M. G., Lazar, M. A., Klein, P. S. (https://doi.org/10.1074/jbc.M101287200>
60. 2002) Protein kinase Cγ (PKCγ): function of neuron specific isotype. J. Biochem. 132, 683-687.
< , N., Shirai, Y. (https://doi.org/10.1093/oxfordjournals.jbchem.a003274>
61. 2008) Regulating gene transcription in response to cyclic AMP elevation. Cell. Signal. 20, 460-466.
< , W. A., Palmer, T. M. (https://doi.org/10.1016/j.cellsig.2007.10.005>
62. 2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805-809.
< , L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C., Hen, R. (https://doi.org/10.1126/science.1083328>
63. 2007) Neurotrophic signaling cascades in the pathophysiology and treatment of bipolar disorder. Curr. Opin. Pharmacol. 7, 22-26.
< , G., Chen, G., Manji, H. K. (https://doi.org/10.1016/j.coph.2006.07.005>
64. 2000) Novel neurotransmitters and their neuropsychiatric relevance. Am. J. Psychiatry 157, 1738-1751.
< , S. H., Ferris, C. D. (https://doi.org/10.1176/appi.ajp.157.11.1738>
65. 1999) The Ca-calmodulin-dependent protein kinase cascade. Trends Biochem. Sci. 24, 232-236.
< , T. R. (https://doi.org/10.1016/S0968-0004(99)01383-3>
66. 2008) Structural basis of protein kinase C isoform function. Physiol. Rev. 88, 1341-1378.
< , S. F. (https://doi.org/10.1152/physrev.00034.2007>
67. 2007) Phospholipase C-eta enzymes as putative protein kinase C and Ca2+ signalling components in neuronal and neuroendocrine tissues. Neuroendocrinology 86, 243-248.
< , A. J., Morgan, K., Farquharson, C., Millar, R. P. (https://doi.org/10.1159/000107795>
68. 2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol. Psychiatry 10, 900-919.
< , C., Renshaw, P. F. (https://doi.org/10.1038/sj.mp.4001711>
69. 2006) Extracellular signalregulated kinase as an inducer of non-apoptotic neuronal death. Neuroscience 138, 1055-1065.
< , S., Unsicker, K. (https://doi.org/10.1016/j.neuroscience.2005.12.013>
70. 2001) Elevated plasma nitrate levels in depressive states. J. Affect. Disord. 63, 221-224.
< , E., Yagi, G., Nakaki, T., Kanba, S., Asai, M. (https://doi.org/10.1016/S0165-0327(00)00164-6>
71. 2003) Changes in the postnatal development on nitric oxide system induced by serotonin depletion. Dev. Brain Res. 146, 39-49.
< , P., Ramos, A. J., Lopez-Costa, J. J., López, E. M., Brusco, A. (https://doi.org/10.1016/j.devbrainres.2003.09.006>
72. 2006) Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview. Pharmacol. Rev. 58, 115-134.
< , D., Perez, J., Tiraboschi, E., Musazzi, L., Racagni, G., Popoli, M. (https://doi.org/10.1124/pr.58.1.7>
73. 2005) Dynamics of signaling by PKA. Biochim. Biophys. Acta 1754, 25-37.
< , S. S., Kim, C., Vigil, D., Haste, N. M., Yang, J., Wu, J., Anand, G. S. (https://doi.org/10.1016/j.bbapap.2005.08.024>
74. 2000) cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J. Neurosci. 20, 4030-4036.
< , J., Sakai, N., Shin, K., Steffen, C., Zhang, Y. J., Impey, S., Storm, D., Duman, R. S. (https://doi.org/10.1523/JNEUROSCI.20-11-04030.2000>
75. 2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23, 2838-2849.
< , T., Penninger, J. M. (https://doi.org/10.1038/sj.onc.1207556>
76. 2001) Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat. Neurosci. 4, 981-988.
< , F. L., Heerssen, H. M., Bhattacharyya, A., Klesse, L., Lin, M. Z., Segal, R. A. (https://doi.org/10.1038/nn720>
77. 2007) NFAT signaling and the invention of vertebrates. Trends Cell Biol. 17, 251-260.
< , H., Peisley, A., Graef, I. A., Crabtree, G. R. (https://doi.org/10.1016/j.tcb.2007.04.006>
78. 2006) Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol. Psychiatry 59, 1006-1020.
< , C. A. Jr., Singh, J., Manji, H. K. (https://doi.org/10.1016/j.biopsych.2005.10.021>
79. 2007) Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J. Neurochem. 103, 1843-1854.
< , Q.-G., Hu, Y., Hua, Y., Hu, M., Luo, C.-X., Han, X., Zhu, X.-J., Wang, B., Xu, J.-S., Zhu, D.-Y. (https://doi.org/10.1111/j.1471-4159.2007.04914.x>
80. 2006) Neuronal nitric oxide synthase-derived nitric oxide inhibits neurogenesis in the adult dentate gyrus by down-regulating cyclic AMP response element binding protein phosphorylation. Neuroscience 141, 827-836.
< , X. J., Hua, Y., Jiang, J., Zhou, Q. G., Luo, C. X., Han, X., Lu, Y. M., Zhu, D. Y. (https://doi.org/10.1016/j.neuroscience.2006.04.032>