Fol. Biol. 2010, 56, 231-241

https://doi.org/10.14712/fb2010056060231

Psychiatric Implications of Endogenous Morphine: Up-To-Date Review

R. M. Kream1, George B. Stefano1, R. Ptáček2

1Neuroscience Research Institute, State University of New York at Old Westbury, New York, USA
2Charles University in Prague, First Faculty of Medicine, Department of Psychiatry, Prague, Czech Republic

Received January 2010
Accepted April 2010

References

1. Abreu, P., Llorente, E., Sanchez, J. J., Gonzalez, M. C. (2000) Nitric oxide inhibits tyrosine hydroxylase of rat median eminence. Life Sci. 67, 1941-1946. <https://doi.org/10.1016/S0024-3205(00)00782-7>
2. Arai, R., Horiike, K., Hasegawa, Y. (1998) Dopamine-degrading activity of monoamine oxidase is not detected by histochemistry in neurons of the substantia nigra pars compacta of the rat. Brain Res. 812, 275-278. <https://doi.org/10.1016/S0006-8993(98)00983-4>
3. Berg, D., Becker, G., Reiners, K. (1999) Reduction of dyskinesia and induction of akinesia induced by morphine in two parkinsonian patients with severe sciatica. J. Neural Transm. 106, 725-728. <https://doi.org/10.1007/s007020050192>
4. Berg, D., Becker, G., Naumann, M., Reiners, K. (2001) Morphine in tardive and idiopathic dystonia (short communication). J. Neural Transm. 108, 1035-1041. <https://doi.org/10.1007/s007020170022>
5. Bianchi, E., Alessandrini, C., Guarna, M., Tagliamonte, A. (1993) Endogenous codeine and morphine are stored in specific brain neurons. Brain Res. 627, 210-215. <https://doi.org/10.1016/0006-8993(93)90323-F>
6. Bianchi, E., Guarna, M., Tagliamonte, A. (1994) Immunocytochemical localization of endogenous codeine and morphine. Adv. Neuroimmunol. 4, 83-92. <https://doi.org/10.1016/S0960-5428(05)80003-8>
7. Bilfinger, T. V., Hartman, A., Liu, Y., Magazine, H. I., Stefano, G. B. (1997) Cryopreserved veins used for myocardial revascularization: A 5 year experience and a possible mechanism for their increased failure. Ann. Thorac. Surg. 63, 1063-1069. <https://doi.org/10.1016/S0003-4975(97)00167-7>
8. Boettcher, C., Fellermeier, M., Boettcher, C., Drager, B., Zenk, M. H. (2005) How human neuroblastoma cells make morphine. Proc. Natl. Acad. Sci. USA 102, 8495-8500. <https://doi.org/10.1073/pnas.0503244102>
9. Britton, D. R. (1982) A convergent approach to the pharmacology of tetrahydroisoquinolines. Prog. Clin. Biol. Res. 90, 321-326.
10. Brix-Christensen, V., Goumon, Y., Tonnesen, E., Chew, M., Bilfinger, T. V., Stefano, G. B. (2000) Endogenous morphine is produced in response to cardiopulmonary bypass in neonatal pigs. Acta Anaesthesiol. Scand. 44, 1204-1208. <https://doi.org/10.1034/j.1399-6576.2000.441004.x>
11. Cadet, P., Mantione, K. J., Stefano, G. B. (2003a) Molecular identification and functional expression of μ3, a novel alternatively spliced variant of the human μ opiate receptor gene. J. Immunol. 170, 5118-5123. <https://doi.org/10.4049/jimmunol.170.10.5118>
12. Cadet, P., Zhu, W., Mantione, K., Rymer, M., Dardik, I., Reisman, S., Hagberg, S., Stefano, G. B. (2003b) Cyclic exercise induces anti-inflammatory signal molecule increases in the plasma of Parkinson’s patients. Int. J. Mol. Med. 12, 485-492.
13. Cadet, P., Rasmussen, M., Zhu, W., Tonnesen, E., Mantione, K. J., Stefano, G. B. (2004) Endogenous morphinergic signaling and tumor growth. Front. Biosci. 9, 3176-3186. <https://doi.org/10.2741/1471>
14. Cadet, P., Mantione, K. J., Zhu, W., Kream, R. M., Sheehan, M., Stefano, G. B. (2007) A functionally coupled μ3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J. Immunol. 179, 5839-5844. <https://doi.org/10.4049/jimmunol.179.9.5839>
15. Cardinale, G. J., Donnerer, J., Finck, A. D., Kantrowitz, J. D., Oka, K., Spector, S. (1987) Morphine and codeine are endogenous components of human cerebrospinal fluid. Life Sci. 40, 301-306. <https://doi.org/10.1016/0024-3205(87)90347-X>
16. Casares, F. M., McElroy, A., Mantione, K. J., Baggerman, G., Zhu, W., Stefano, G. B. (2005) The American lobster, Homarus americanus, contains morphine that is coupled to nitric oxide release in its nervous and immune tissues: Evidence for neurotransmitter and hormonal signaling. Neuro Endocrinol. Lett. 26, 89-97.
17. Clow, A., Stolerman, I. P., Murray, R. M., Sandler, M. (1983) Ethanol preference in rats: increased consumption after intraventricular administration of tetrahydropapaveroline. Neuropharmacol. 22, 563-565. <https://doi.org/10.1016/0028-3908(83)90181-8>
18. Cohen, M. R., Pickar, D. (1981) Pharmacological challenges to the endogenous opioid system in affective illness. J. Clin. Psychopharmacol. 1, 223-231. <https://doi.org/10.1097/00004714-198107000-00007>
19. Collins, M. A., Hannigan, J. J., Weiner, C. (1979) Effects of catecholic tetrahydroisoquinolines on endogenous catecholamines. Curr. Alcohol. 5, 53-59.
20. Collins, M. A. (2004) Tetrahydropapaveroline in Parkinson’s disease and alcoholism: a look back in honor of Merton Sandler. Neurotoxicology 25, 117-120. <https://doi.org/10.1016/S0161-813X(03)00145-1>
21. Comfort, A. (1977) Morphine as an antipsychotic. Relevance of a 19th-century therapeutic fashion. Lancet 2, 448-449. <https://doi.org/10.1016/S0140-6736(77)90623-7>
22. Coscia, C. J., Burke, W., Jamroz, G., Lasala, J. M., McFarlane, J., Mitchell, J., O’Toole, M. M., Wilson, M. L. (1977) Occurrence of a new class of tetrahydroisoquinoline alkaloids in L-dopa-treated parkinsonian patients. Nature 269, 617-619. <https://doi.org/10.1038/269617a0>
23. Davis, V. E., Walsh, M. J. (1970) Alcohol, amines, and alkaloids: a possible biochemical basis for alcohol addiction. Science 167, 1005-1007. <https://doi.org/10.1126/science.167.3920.1005>
24. Davis, V. E., Walsh, M. J., Yamanaka, Y. (1970) Augmentation of alkaloid formation from dopamine by alcohol and acetaldehyde in vitro. J. Pharmacol. Exp. Ther. 174, 401-412.
25. Davis, V. E., Cashaw, J. L., McMurtrey, K. D. (1975) Disposition of catecholamine-derived alkaloids in mammalian systems. Adv. Exp. Med. Biol. 59, 65-78. <https://doi.org/10.1007/978-1-4757-0632-1_6>
26. DiChiara, G., Acquas, E., Carboni, E. (1990) Dopamine and drug-induced motivation. In: Dopamine and Mental Depression, eds. Gessa G. L., Serra G, pp. 27-38, Pergamon Press, Oxford.
27. Donnerer, J., Oka, K., Brossi, A., Rice, K. C., Spector S. (1986) Presence and formation of codeine and morphine in the rat. Proc. Natl. Acad. Sci. USA 83, 4566-4567. <https://doi.org/10.1073/pnas.83.12.4566>
28. Donnerer, J., Cardinale, G., Coffey, J., Lisek, C. A., Jardine, I., Spector, S. (1987) Chemical characterization and regulation of endogenous morphine and codeine in the rat. J. Pharmacol. Exp. Ther. 242, 583-587.
29. Duncan, C. C., Fernando, P. W. (1991) Effects of tetrahydropapaveroline in the nucleus accumbens and the ventral tegmental area on ethanol preference in the rat. Alcohol 8, 87-90. <https://doi.org/10.1016/0741-8329(91)91314-R>
30. Dusek, J. A., Chang, B. H., Zaki, J., Lazar, S., Deykin, A., Stefano, G. B., Wohlhueter, A. L., Hibberd, P. L., Benson, H. (2006) Association between oxygen consumption and nitric oxide production during the relaxation response. Med. Sci. Monit. 12, CR1-10.
31. Elchaar, G. M., Maisch, N. M., Augusto, L. M., Wehring, H. J. (2006) Efficacy and safety of naltrexone use in pediatric patients with autistic disorder. Ann. Pharmacother. 40, 1086-1095. <https://doi.org/10.1345/aph.1G499>
32. Epple, A., Navarro, I., Horak, P., Spector, S. (1993) Endogenous morphine and codeine: release by the chromaffin cells of the eel. Life Sci. 52, PL117-PL121. <https://doi.org/10.1016/0024-3205(93)90175-3>
33. Esch, T., Stefano, G. B. (2005) The neurobiology of love. Neuro Endocrinol. Lett. 26, 175-192.
34. Esch, T., Kim, J. W., Stefano, G. B. (2006) Neurobiological implications of eating healthy. Neuro Endocrinol. Lett. 27, 21-33.
35. Extein, I., Pickar, D., Gold, M. S., Gold, P. W., Pottash, A. L., Sweeney, D. R., Ross, R. J., Rebard, R., Martin, D., Goodwin, F. K. (1981) Methadone and morphine in depression [proceedings]. Psychopharmacol. Bull. 17, 29-33.
36. Fricchione, G. L., Mendoza, A., Stefano, G. B. (1994) Morphine and its psychiatric implications. Adv. Neuroimmunol. 4, 117-132. <https://doi.org/10.1016/S0960-5428(05)80006-3>
37. Fricchione, G. L., Stefano, G. B. (2005) Placebo neural systems: Nitric oxide, morphine and the dopamine brain reward and motivation circuitries. Med. Sci. Monit. 11, MS54-MS65.
38. Fricchione, G., Zhu, W., Cadet, P., Mantione, K. J., Bromfield, E., Madsen, J., DeGirolami, U., Dworetzky, B., Vaccaro, B., Black, P., Stefano, G. B. (2008) Identification of endogenous morphine and a μ3-like opiate alkaloid receptor in human brain tissue taken from a patient with intractable complex partial epilepsy. Med. Sci. Monit. 14, CS45-CS49.
39. Galloway, M. P., Burke, W. J., Coscia, C. J. (1982) Tetrahydroisoquinoline carboxylic acids and catecholamine metabolism in adrenal medulla explants. Biochem. Pharmacol. 31, 3251-3256. <https://doi.org/10.1016/0006-2952(82)90558-5>
40. Gintzler, A. R., Levy, A., Spector, S. (1976) Antibodies as a means of isolating and characterizing biologically active substances: Presence of a non-peptide morphine-like compound in the central nervous system. Proc. Natl. Acad. Sci. USA 73, 2132-2136. <https://doi.org/10.1073/pnas.73.6.2132>
41. Gintzler, A. R., Gershon, M. D., Spector, S. (1978) A nonpeptide morphine-like compound: immunocytochemical localization in the mouse brain. Science 199, 447-448. <https://doi.org/10.1126/science.339350>
42. Gold, M. S., Pottash, A. C., Sweeney, D., Martin, D., Extein, I. (1982) Antimanic, antidepressant, and antipanic effects of opiates: clinical, neuroanatomical, and biochemical evidence. Ann. N. Y. Acad. Sci. 398, 140-150. <https://doi.org/10.1111/j.1749-6632.1982.tb39488.x>
43. Goldstein, A., Barrett, R. W., James, I. F., Lowney, L. I., Weitz, C., Knipmeyer, L. I., Rapoport, H. (1985) Morphine and other opiates from beef brain and adrenal. Proc. Natl. Acad. Sci. USA 82, 5203-5207. <https://doi.org/10.1073/pnas.82.15.5203>
44. Gonzalez, M. C., Llorente, E., Abreu, P. (1998) Sodium nitroprusside inhibits the tyrosine hydroxylase activity of the median eminence in the rat. Neurosci. Lett. 254, 133-136. <https://doi.org/10.1016/S0304-3940(98)00663-6>
45. Goumon, Y., Stefano, G. B. (2000) Identification of morphine in the rat adrenal gland. Mol. Brain. Res. 77, 267-269. <https://doi.org/10.1016/S0169-328X(00)00056-5>
46. Goumon, Y., Bouret, S., Casares, F., Zhu, W., Beauvillain, J. C., Stefano, G. B. (2000a) Lipopolysaccharide increases endogenous morphine levels in rat brain. Neurosci. Lett. 293, 135-138. <https://doi.org/10.1016/S0304-3940(00)01507-X>
47. Goumon, Y., Casares, F., Pryor, S., Ferguson, L., Brownwell, B., Cadet, P., Rialas, C. M., Welters, I., Sonetti, D., Stefano, G. B. (2000b) Ascaris suum, an internal parasite, produces morphine. J. Immunol. 165, 339-343. <https://doi.org/10.4049/jimmunol.165.1.339>
48. Goumon, Y., Weeks, B. S., Cadet, P., Stefano, G. B. (2000c) Identification of morphine in the adrenal medullary chromaffin PC-12 cell line. Mol. Brain. Res. 81, 177-180. <https://doi.org/10.1016/S0169-328X(00)00141-8>
49. Goumon, Y., Casares, F., Zhu, W., Stefano, G. B. (2001) The presence of morphine in ganglionic tissues of Modiolus deminissus: A highly sensitive method of quantitation for morphine and its derivatives. Mol. Brain. Res. 86, 184-188. <https://doi.org/10.1016/S0169-328X(00)00132-7>
50. Goumon, Y., Strub, J. M., Stefano, G. B., Van, D. A., Aunis, D., Metz-Boutigue, M. H. (2005) Characterization of a morphine-like molecule in secretory granules of chromaffin cells. Med. Sci. Monit. 11, MS31-MS34.
51. Greenberg, R. S., Cohen, G. (1973) Tetrahydroisoquinoline alkaloids: stimulated secretion from the adrenal medulla. J. Pharmacol. Exp. Ther. 184, 119-128.
52. Guarna, M., Neri, C., Petrioli, F., Bianchi, E. (1998) Potassiuminduced release of endogenous morphine form rat brain slices. J. Neurochem. 70, 147-152. <https://doi.org/10.1046/j.1471-4159.1998.70010147.x>
53. Guarna, M., Bianchi, E., Bartolini, A., Ghelardini, C., Galeotti, N., Bracci, L., Neri, C., Sonetti, D., Stefano, G. B. (2002) Endogenous morphine modulates acute thermonociception in mice. J. Neurochem. 80, 271-277. <https://doi.org/10.1046/j.0022-3042.2001.00708.x>
54. Guarna, M., Ghelardini, C., Galeotti, N., Bartolini, A., Noli, L., Neri, C., Stefano, G. B., Bianchi, E. (2004) Effects of endogenous morphine deprivation on memory retention of passive avoidance learning in mice. Int. J. Neuropsychopharmacol. 7, 311-319. <https://doi.org/10.1017/S1461145704004341>
55. Guarna, M., Ghelardini, C., Galeotti, N., Stefano, G. B., Bianchi, E. (2005) Neurotransmitter role of endogenous morphine in CNS. Med. Sci. Monit. 11, RA190-RA193.
56. Guengerich, F. P., Miller, G. P., Hanna, I. H., Sato, H., Martin, M. V. (2002) Oxidation of methoxyphenethylamines by cytochrome P450 2D6. Analysis of rate-limiting steps. J. Biol. Chem. 277, 33711-33719. <https://doi.org/10.1074/jbc.M205146200>
57. Halushka, P. V., Hoffmann, P. C., Davis, V. E., Walsh, M. J. (1970) Alcohol addiction and tetrahydropapaveroline. Science 169, 1104-1106. <https://doi.org/10.1126/science.169.3950.1104>
58. Hara, H., Adachi, T. (2002) Contribution of the hepatocyte nuclear factor-4 to down-regulation of CYP2D6 gene expression by nitric oxide. Mol. Pharmacol. 61, 194-200. <https://doi.org/10.1124/mol.61.1.194>
59. Heikkila, R., Cohen, G., Dembiec, D. (1971) Tetrahydroisoquinoline alkaloids: uptake by rat brain homogenates and inhibition of catecholamine uptake. J. Pharmacol. Exp. Ther. 179, 250-258.
60. Herman, B. H., Hammock, M. K., Arthur-Smith, A., Egan, J., Chatoor, I., Zeinick, N., Corradine, M., Applegate, K., Boeckx, R. L., Sharp, S. D. (1986) Role of opioid peptides in autism: Effects of acute administration of naltrexone. Soc. Neurosci. 12, 172-173.
61. Hiroi, T., Imaoka, S., Funae, Y. (1998) Dopamine formation from tyramine by CYP2D6. Biochem. Biophys. Res. Commun. 249, 838-843. <https://doi.org/10.1006/bbrc.1998.9232>
62. Hofmann, U., Seefried, S., Schweizer, E., Ebner, T., Mikus, G., Eichelbaum, M. (1999) Highly sensitive gas chromatographic-tandem mass spectrometric method for the determination of morphine and codeine in serum and urine in the femtomolar range. J. Chromatogr. B. Biomed. Sci. Appl. 727, 81-88. <https://doi.org/10.1016/S0378-4347(99)00090-0>
63. Johnston, G. A. (1971) L-dopa and pyridoxal 5’-phosphate: tetrahydroisoquinoline formation. Lancet 1, 1068. <https://doi.org/10.1016/S0140-6736(71)91629-1>
64. Kapur, S., Mann, J. J. (1992) Role of the dopaminergic system in depression. Biol. Psych. 32, 1-17. <https://doi.org/10.1016/0006-3223(92)90137-O>
65. Katz, S., Cohen, G. (1976) A comparison of 6,7-dihydroxytetrahydroisoquinoline, salsolinol and tetrahydropapaveroline as inhibitors of monoamine oxidase within the adrenergic nerve plexus of the isolated mouse atrium. Res. Commun. Chem. Pathol. Pharmacol. 13, 217-224.
66. Killian, A. K., Schuster, C. R., House, J. T., Shell, S., Connors, V. A., Waener, B. H. (1981) A non-peptide morphine-like compound from brain. Life Sci. 28, 811-817. <https://doi.org/10.1016/0024-3205(81)90165-X>
67. Kim, Y. M., Kim, M. N., Lee, J. J., Lee, M. K. (2005) Inhibition of dopamine biosynthesis by tetrahydropapaveroline. Neurosci. Lett. 386, 1-4. <https://doi.org/10.1016/j.neulet.2005.04.105>
68. Kodaira, H., Spector, S. (1988) Transformation of thebaine to oripavine, codeine, and morphine by rat liver, kidney, and brain microsomes. Proc. Natl. Acad. Sci. USA 85, 1267-1271. <https://doi.org/10.1073/pnas.85.4.1267>
69. Kodaira, H., Listek, C. A., Jardine, I., Arimura, A., Spector, S. (1989) Identification of the convulsant opiate thebaine in the mammalian brain. Proc. Natl. Acad. Sci. USA 86, 716-719. <https://doi.org/10.1073/pnas.86.2.716>
70. Kream, R. M., Zukin, R. S., Stefano, G. B. (1980) Demonstration of two classes of opiate binding sites in the nervous tissue of the marine mollusc Mytilus edulis. Positive homotropic cooperativity of lower affinity binding sites. J. Biol. Chem. 255, 9218-9224. <https://doi.org/10.1016/S0021-9258(19)70549-3>
71. Kream, R. M., Stefano, G. B. (2006) De novo biosynthesis of morphine in animal cells: An evidence-based model. Med. Sci. Monit. 12, RA207-RA219.
72. Kream, R. M., Sheehan, M., Cadet, P., Mantione, K. J., Zhu, W., Casares, F. M., Stefano, G. B. (2007) Persistence of evolutionary memory: Primordial six-transmembrane helical domain μ opiate receptors selectively linked to endogenous nmorphine signaling. Med. Sci. Monit. 13, SC5-SC6.
73. Lindstrom, L. H., Widerlov, E., Gunne, L. M., Wahlstrom, A., Terenius, L. (1978) Endorphins in human cerebrospinal fluid: clinical correlations to some psychotic states. Acta Psychiatr. Scand. 57, 153-164. <https://doi.org/10.1111/j.1600-0447.1978.tb06883.x>
74. Lipska, B. K., Weinberger, D. R. (1993) Cortical regulation of the mesolimbic dopamine system: Implications for schizophrenia. In: Limbic Motor Circuits and Neuropsychiatry, eds. Kalivas P. W., Barnes C. D. pp 329-349, CRC Press, Boca Raton, FL.
75. Liu, Y., Shenouda, D., Bilfinger, T. V., Stefano, M. L., Magazine, H. I., Stefano, G. B. (1996) Morphine stimulates nitric oxide release from invertebrate microglia. Brain Res. 722, 125-131. <https://doi.org/10.1016/0006-8993(96)00204-1>
76. Mantione, K. J., Cadet, P., Zhu, W., Kream, R. M., Sheehan, M., Fricchione, G. L., Goumon, Y., Esch, T., Stefano, G. B. (2008) Endogenous morphine signaling via nitric oxide regulates the expression of CYP2D6 and COMT: autocrine/ paracrine feedback inhibition. Addict. Biol. 13, 118-123. <https://doi.org/10.1111/j.1369-1600.2007.00072.x>
77. Matsubara, K., Fukushima, S., Akane, A., Kobayashi, S., Shiono, H. (1992) Increased urinary morphine, codeine and tetrahydropapaveroline in parkinsonian patient undergoing L-3,4-dihydroxyphenylalanine therapy: a possible biosynthetic pathway of morphine from L-3,4-dihydroxyphenylalanine in humans. J. Pharmacol. Exp. Ther. 260, 974-978.
78. Miller, G. P., Hanna, I. H., Nishimura, Y., Guengerich, F. P. (2001) Oxidation of phenethylamine derivatives by cytochrome P450 2D6: the issue of substrate protonation in binding and catalysis. Biochemistry 40, 14215-14223. <https://doi.org/10.1021/bi0110037>
79. Moles, A., Kieffer, B. L., D’Amato, F. R. (2004) Deficit in attachment behavior in mice lacking the μ-opioid receptor gene. Science 304, 1983-1986. <https://doi.org/10.1126/science.1095943>
80. Munjal, I. D., Minna, J. D., Manneckjee, R., Bieck, P., Spector, S. (1996) Possible role of endogenous morphine and codeine on growth regulation of lung tissue. Life Sci. 57, 517-521. <https://doi.org/10.1016/0024-3205(95)00285-E>
81. Myers, R. D. (1990) Anatomical “circuitry” in the brain mediating alcohol drinking revealed by THP-reactive sites in the limbic system. Alcohol 7, 449-459. <https://doi.org/10.1016/0741-8329(90)90031-7>
82. Myers, R. D., Robinson, D. E. (1999) Tetrahydropapaveroline injected in the ventral tegmental area shifts dopamine efflux differentially in the shell and core of nucleus accumbens in high-ethanol-preferring (HEP) rats. Alcohol 18, 83-90. <https://doi.org/10.1016/S0741-8329(99)00008-7>
83. Naoi, M., Maruyama, W., Kasamatsu, T., Dostert, P. (1998) Oxidation of N-methyl(R)salsolinol: involvement to neurotoxicity and neuroprotection by endogenous catechol isoquinolines. J. Neural Transm. Suppl. 52, 125-138. <https://doi.org/10.1007/978-3-7091-6499-0_14>
84. Neri, C., Guarna, M., Bianchi, E., Sonetti, D., Matteucci, G., Stefano, G. B. (2004) Endogenous morphine and codeine in the brain of non-human primate. Med. Sci. Monit. 10, MS1-MS5.
85. Neri, C., Ghelardini, C., Sotak, B., Palmiter, R. D., Guarna, M., Stefano, G. B., Bianchi, E. (2008) Dopamine is necessary to endogenous morphine formation in mammalian brain in vivo. J. Neurochem. 106, 2337-2344. <https://doi.org/10.1111/j.1471-4159.2008.05572.x>
86. Nikulina, E. M., Miczek, K. A., Hammer, R. P., Jr. (2005) Prolonged effects of repeated social defeat stress on mRNA expression and function of μ-opioid receptors in the ventral tegmental area of rats. Neuropsychopharmacol. 30, 1096-1103. <https://doi.org/10.1038/sj.npp.1300658>
87. Nimit, Y., Schulze, I., Cashaw, J. L., Ruchirawat, S., Davis, V. E. (1983) Interaction of catecholamine-derived alkaloids with central neurotransmitter receptors. J. Neurosci. Res. 10, 175-189. <https://doi.org/10.1002/jnr.490100207>
88. Niwa, T., Maruyama, W., Nakahara, D., Takeda, N., Yoshizumi, H., Tatematsu, A., Takahashi, A., Dostert, P., Naoi, M., Nagatsu, T. (1992) Endogenous synthesis of N-methylsalsolinol, an analogue of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, in rat brain during in vivo microdialysis with salsolinol, as demonstrated by gas chromatography-mass spectrometry. J. Chromatogr. 578, 109-115. <https://doi.org/10.1016/0378-4347(92)80231-E>
89. Niwa, T., Hiroi, T., Tsuzuki, D., Yamamoto, S., Narimatsu, S., Fukuda, T., Azuma, J., Funae, Y. (2004) Effect of genetic polymorphism on the metabolism of endogenous neuroactive substances, progesterone and p-tyramine, catalyzed by CYP2D6. Brain. Res. Mol. Brain. Res. 129, 117-123. <https://doi.org/10.1016/j.molbrainres.2004.06.030>
90. Okada, T., Shimada, S., Sato, K., Kotake, Y., Kawai, H., Ohta, S., Tohyama, M., Nishimura, T. (1998) Tetrahydropapaveroline and its derivatives inhibit dopamine uptake through dopamine transporter expressed in HEK293 cells. Neurosci. Res. 30, 87-90. <https://doi.org/10.1016/S0168-0102(97)00121-1>
91. Pasternak, G. W. (1988) The Opiate Receptors. Humana Press, Clifton, NJ.
92. Pickar, D., Vartanian, F., Bunney, W. E., Jr., Maier, H. P., Gastpar, M. T., Prakash, R., Sethi, B. B., Lideman, R., Belyaev, B. S., Tsutsulkovskaja, M. V., Jungkunz, G., Nedopil, N., Verhoeven, W., van P. H. (1982) Short-term naloxone administration in schizophrenic and manic patients. A World Health Organization Collaborative Study. Arch. Gen. Psychiatry 39, 313-319. <https://doi.org/10.1001/archpsyc.1982.04290030047009>
93. Pryor, S. C., Zhu, W., Cadet, P., Bianchi, E., Guarna, M., Stefano, G. B. (2005) Endogenous morphine: opening new doors for the treatment of pain and addiction. Expert Opin. Biol. Ther. 5, 893-906. <https://doi.org/10.1517/14712598.5.7.893>
94. Reisine, T., Bell, G. I. (1993) Molecular biology of opioid receptors. Trends Neurosci. 16, 506-510. <https://doi.org/10.1016/0166-2236(93)90194-Q>
95. Reisine, T. (1995) Opiate receptors. Neuropharmacol. 34, 463-472. <https://doi.org/10.1016/0028-3908(95)00025-2>
96. Robertson, A. G., Jackman, H., Meltzer, H. Y. (1984) Prolactin response to morphine in depression. Psychiatry Res. 11, 353-364. <https://doi.org/10.1016/0165-1781(84)90008-8>
97. Sallstrom, B. S., Hill, R., Kiianmaa, K., Rommelspacher, H. (1999) Effect of ethanol on (R)and (S)-salsolinol, salsoline, and THP in the nucleus accumbens of AA and ANA rats. Alcohol 18, 165-169.
98. Sandler, M., Carter, S. B., Hunter, K. R., Stern, G. M. (1973) Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man. Nature 241, 439-443. <https://doi.org/10.1038/241439a0>
99. Sandler, M., Glover, V., Armando, I., Clow, A. (1982) PictetSpengler condensation products, stress and alcoholism: some clinical overtones. Prog. Clin. Biol. Res. 90, 215-226.
100. Schmauss, C., Emrich, H. M. (1985) Dopamine and the action of opiates: a reevaluation of the dopamine hypothesis of schizophrenia. With special consideration of the role of endogenous opioids in the pathogenesis of schizophrenia. Biol. Psychiatry 20, 1211-1231. <https://doi.org/10.1016/0006-3223(85)90179-9>
101. Shin, M. H., Jang, J. H., Surh, Y. J. (2004) Potential roles of NF-κB and ERK1/2 in cytoprotection against oxidative cell death induced by tetrahydropapaveroline. Free Radic. Biol. Med. 36, 1185-1194. <https://doi.org/10.1016/j.freeradbiomed.2004.02.011>
102. Soh, Y., Shin, M. H., Lee, J. S., Jang, J. H., Kim, O. H., Kang, H., Surh, Y. J. (2003) Oxidative DNA damage and glioma cell death induced by tetrahydropapaveroline. Mutat. Res. 544, 129-142. <https://doi.org/10.1016/j.mrrev.2003.06.023>
103. Spector, S., Munjal, I., Schmidt, D. E. (2001) Endogenous morphine and codeine. Possible role as endogenous anticonvulsants. Brain Res. 915, 155-160. <https://doi.org/10.1016/S0006-8993(01)02837-2>
104. Stefano, G. B., Digenis, A., Spector, S., Leung, M. K., Bilfinger, T. V., Makman, M. H., Scharrer, B., Abumrad, N. N. (1993) Opiate-like substances in an invertebrate, an opiate receptor on invertebrate and human immunocytes, and a role in immunosuppression. Proc. Natl. Acad. Sci. USA 90, 11099-11103. <https://doi.org/10.1073/pnas.90.23.11099>
105. Stefano, G. B., Scharrer, B. (1994) Endogenous morphine and related opiates, a new class of chemical messengers. Adv. Neuroimmunol. 4, 57-68. <https://doi.org/10.1016/S0960-5428(05)80001-4>
106. Stefano, G. B., Bilfinger, T. V., Fricchione, G. L. (1994) The immune neuro-link and the macrophage: Postcardiotomy delirium, HIV-associated dementia and psychiatry. Prog. Neurobiol. 42, 475-488. <https://doi.org/10.1016/0301-0082(94)90048-5>
107. Stefano, G. B., Hartman, A., Bilfinger, T. V., Magazine, H. I., Liu, Y., Casares, F., Goligorsky, M. S. (1995) Presence of the μ3 opiate receptor in endothelial cells: Coupling to nitric oxide production and vasodilation. J. Biol. Chem. 270, 30290-30293. <https://doi.org/10.1074/jbc.270.51.30290>
108. Stefano, G. B., Fricchione, G. L. (1995a) The biology of deception: Emotion and morphine. Med. Hypotheses 49, 51-54.
109. Stefano, G. B., Fricchione, G. L. (1995b) The biology of deception: The evolution of cognitive coping as a denial-like process. Med. Hypotheses 44, 311-314. <https://doi.org/10.1016/0306-9877(95)90255-4>
110. Stefano, G. B., Scharrer, B. (1996) The presence of the μ3 opiate receptor in invertebrate neural tissues. Comp. Biochem. Physiol. 113C, 369-373.
111. Stefano, G. B., Scharrer, B., Bilfinger, T. V., Salzet, M., Fricchione, G. L. (1996a) A novel view of opiate tolerance. Adv. Neuroimmunol. 6, 265-277. <https://doi.org/10.1016/S0960-5428(96)00022-8>
112. Stefano, G. B., Scharrer, B., Smith, E. M., Hughes, T. K., Magazine, H. I., Bilfinger, T. V., Hartman, A., Fricchione, G. L., Liu, Y., Makman, M. H. (1996b) Opioid and opiate immunoregulatory processes. Crit. Rev. Immunol. 16, 109-144. <https://doi.org/10.1615/CritRevImmunol.v16.i2.10>
113. Stefano, G. B., Goumon, Y., Bilfinger, T. V., Welters, I., Cadet, P. (2000a) Basal nitric oxide limits immune, nervous and cardiovascular excitation: Human endothelia express a μ opiate receptor. Progr. Neurobiol. 60, 513-530. <https://doi.org/10.1016/S0301-0082(99)00038-6>
114. Stefano, G. B., Goumon, Y., Casares, F., Cadet, P., Fricchione, G. L., Rialas, C., Peter, D., Sonetti, D., Guarna, M., Welters, I., Bianchi, E. (2000b) Endogenous morphine. Trends. Neurosci. 9, 436-442. <https://doi.org/10.1016/S0166-2236(00)01611-8>
115. Stefano, G. B., Fricchione, G. L., Slingsby, B. T., Benson, H. (2001) The placebo effect and relaxation response: Neural processes and their coupling to constitutive nitric oxide. Brain Res. Brain Res. Rev. 35, 1-19. <https://doi.org/10.1016/S0165-0173(00)00047-3>
116. Stefano, G. B., Zhu, W., Cadet, P., Mantione, K., Bilfinger, T. V., Bianchi, E., Guarna, M. (2002) A hormonal role for endogenous opiate alkaloids: Vascular tissues. Neuro Endocrinol. Lett. 23, 21-26.
117. Stefano, G. B., Cadet, P., Rialas, C. M., Mantione, K., Casares, F., Goumon, Y., Zhu, W. (2003) Invertebrate opiate immune and neural signaling. In: Immune Mechanisms of Pain and Analgesia, eds. Machelska H., Stein C., pp. 126-147. Plenum Publ., New York, NY.
118. Stefano, G. B., Zhu, W., Cadet, P., Mantione, K. (2004a) Morphine enhances nitric oxide release in the mammalian gastrointestinal tract via the μ3 opiate receptor subtype: A hormonal role for endogenous morphine. J. Physiol. Pharmacol. 55, 279-288.
119. Stefano, G. B., Zhu, W., Cadet, P., Salamon, E., Mantione, K. J. (2004b) Music alters constitutively expressed opiate and cytokine processes in listeners. Med. Sci. Monit. 10, MS18-MS27.
120. Stefano, G. B., Fricchione, G. L., Goumon, Y., Esch, T. (2005) Pain, immunity, opiate and opioid compounds and health. Med. Sci. Monit. 11, MS47-MS53.
121. Stefano, G. B., Fricchione, G. L., Esch, T. (2006) Relaxation: Molecular and physiological significance. Med. Sci. Monit. 12, HY21-31.
122. Stefano, G. B., Kream, R. M. (2007) Endogenous morphine synthetic pathway preceded and gave rise to catecholamine synthesis in evolution (Review). Int. J. Mol. Med. 20, 837-841.
123. Stefano, G. B., Bianchi, E., Guarna, M., Fricchione, G. L., Zhu, W., Cadet, P., Mantione, K. J., Casares, F. M., Kream, R. M., Esch, T. (2007) Nicotine, alcohol and cocaine coupling to reward processes via endogenous morphine signaling: The dopamine-morphine hypothesis. Med. Sci. Monit. 13, RA91-102.
124. Stefano, G. B., Kream, R. (2008) Endogenous opiates, opioids, and immune function: evolutionary brokerage of defensive behaviors. Semin. Cancer. Biol. 18, 190-198. <https://doi.org/10.1016/j.semcancer.2007.12.001>
125. Suzuki, K., Mizuno, Y., Yoshida, M. (1990) Inhibition of mitochondrial respiration by 1,2,3,4-tetrahydroisoquinolinelike endogenous alkaloids in mouse brain. Neurochem. Res. 15, 705-710. <https://doi.org/10.1007/BF00973651>
126. Turner, A. J., Baker, K. M., Algeri, S., Erigerio, A., Garattini, S. (1974) Tetrahydropapaveroline: formation in vivo and in vitro in rat brain. Life Sci. 14, 2247-2257. <https://doi.org/10.1016/0024-3205(74)90106-4>
127. Walsh, M. J., Davis, V. E., Yamanaka, Y. (1970) Tetrahydropapaveroline: an alkaloid metabolite of dopamine in vitro. J. Pharmacol. Exp. Ther. 174, 388-400.
128. Weinberger, D. R., Berman, K. F., Suddath, R., Torrey, E. F. (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am. J. Psychiatry 149, 890-897.
129. Weiner, H. (1978) Relationship between 3,4-dihydroxyphenylacetaldehyde levels and tetrahydropapaveroline formation. Alcohol. Clin. Exp. Res. 2, 127-131. <https://doi.org/10.1111/j.1530-0277.1978.tb04712.x>
130. Weiner, H. (1981) Possible steady-state concentrations of tetrahydroisoquinolines in brain after the consumption of ethanol. Fed. Proc. 40, 2082-2085.
131. Weitz, C. J., Faull, K. F., Goldstein, A. (1987) Synthesis of the skeleton of the morphine molecule by mammalian liver. Nature 330, 674-677. <https://doi.org/10.1038/330674a0>
132. Yamanaka, Y., Walsh, M. J., Davis, V. E. (1970) Salsolinol, an alkaloid derivative of dopamine formed in vitro during alcohol metabolism. Nature 227, 1143-1144. <https://doi.org/10.1038/2271143a0>
133. Zhu, W., Baggerman, G., Goumon, Y., Casares, F., Brownawell, B., Stefano, G. B. (2001a) Presence of morphine and morphine-6-glucuronide in the marine mollusk Mytilus edulis ganglia determined by GC/MS and Q-TOF-MS. Starvation increases opiate alkaloid levels. Brain Res. Mol. Brain Res. 88, 155-160. <https://doi.org/10.1016/S0169-328X(01)00048-1>
134. Zhu, W., Baggerman, G., Goumon, Y., Zenk, M. H., Stefano, G. B. (2001b) Identification of morphine and morphine6-glucuronide in the adrenal medullary chromaffin PC-12 cell line by nano electrospray ionization double quadrupole orthogonal acceleration time of flight mass spectrometry. Eur. J. Mass Spectrom. 7, 25-28. <https://doi.org/10.1255/ejms.384>
135. Zhu, W., Bilfinger, T. V., Baggerman, G., Goumon, Y., Stefano, G. B. (2001c) Presence of endogenous morphine and morphine 6 glucuronide in human heart tissue. Int. J. Mol. Med. 7, 419-422.
136. Zhu, W., Baggerman, G., Secor, W. E., Casares, F., Pryor, S. C., Fricchione, G. L., Ruiz-Tiben, E., Eberhard, M. L., Bimi, L., Stefano, G. B. (2002a) Dracunculus medinensis and Schistosoma mansoni contain opiate alkaloids. Ann. Trop. Med. Parasitol. 96, 309-316. <https://doi.org/10.1179/000349802125000808>
137. Zhu, W., Ma, Y., Stefano, G. B. (2002b) Presence of isoquinoline alkaloids in molluscan ganglia. Neuro Endocrinol. Lett. 23, 329-334.
138. Zhu, W., Ma, Y., Cadet, P., Yu, D., Bilfinger, T. V., Bianchi, E., Stefano, G. B. (2003) Presence of reticuline in rat brain: A pathway for morphine biosynthesis. Mol. Brain. Res. 117, 83-90. <https://doi.org/10.1016/S0169-328X(03)00323-1>
139. Zhu, W., Stefano, G. B. (2004) Reticuline exposure to invertebrate ganglia increases endogenous morphine levels. Neuro Endocrinol. Lett. 25, 323-330.
140. Zhu, W., Ma, Y., Bell, A., Esch, T., Guarna, M., Bilfinger, T. V., Bianchi, E., Stefano, G. B. (2004a) Presence of morphine in rat amygdala: Evidence for the μ3 opiate receptor subtype via nitric oxide release in limbic structures. Med. Sci. Monit. 10, BR433-BR439.
141. Zhu, W., Pryor, S. C., Putnam, J., Cadet, P., Stefano, G. B. (2004b) Opiate alkaloids and nitric oxide production in the nematode Ascaris suum. J. Parasitol. 90, 15-22. <https://doi.org/10.1645/GE-3208>
142. Zhu, W., Cadet, P., Baggerman, G., Mantione, K. J., Stefano, G. B. (2005a) Human white blood cells synthesize morphine: CYP2D6 modulation. J. Immunol. 175, 7357-7362. <https://doi.org/10.4049/jimmunol.175.11.7357>
143. Zhu, W., Mantione, K. J., Shen, L., Cadet, P., Esch, T., Goumon, Y., Bianchi, E., Sonetti, D., Stefano, G. B. (2005b) Tyrosine and tyramine increase endogenous ganglionic morphine and dopamine levels in vitro and in vivo: CYP2D6 and tyrosine hydroxylase modulation demonstrates a dopamine coupling. Med. Sci. Monit. 11, BR397-BR404.
144. Zhu, W., Mantione, K. J., Shen, L., Stefano, G. B. (2005c) In vivo and in vitro L-DOPA exposure increases ganglionic morphine levels. Med. Sci. Monit. 11, MS1-MS5.
145. Zhu, W., Cadet, P., Mantione, K. J., Kream, R. M., Stefano, G. B. (2006a) Response to comment on “Human white blood cells synthesize morphine: CYP2D6 modulation”. J. Immunol. 176, 5704. <https://doi.org/10.4049/jimmunol.176.10.5704>
146. Zhu, W., Mantione, K., Kream, R. M., Stefano, G. B. (2006b) Alcohol-, nicotine-, and cocaine-evoked release of morphine from human white blood cells: Substances of abuse actions converge on endogenous morphine release. Med. Sci. Monit. 12, BR350-BR354.
147. Zhu, W., Mantione, K. J., Casares, F. M., Cadet, P., Kim, J. W., Bilfinger, T. V., Kream, R. M., Khalil, S., Singh, S., Stefano, G. B. (2006c) Alcohol-, nicotine-, and cocaineevoked release of morphine from invertebrate ganglia: Model system for screening drugs of abuse. Med. Sci. Monit. 12, BR155-BR161.
148. Zhu, W., Mantione, K. J., Casares, F. M., Sheehan, M. H., Kream, R. M., Stefano, G. B. (2006d) Cholinergic regulation of endogenous morphine release from lobster nerve cord. Med. Sci. Monit. 12, BR295-BR301.
149. Zhu, W., Mantione, K. J., Shen, L., Lee, B., Stefano, G. B. (2006e) Norlaudanosoline and nicotine increase endogenous ganglionic morphine levels: nicotine addiction. Cell Mol. Neurobiol. 26, 1035-1043. <https://doi.org/10.1007/s10571-006-9021-4>
150. Zhu, W., Esch, T., Kream, R. M., Stefano, G. B. (2008) Converging cellular processes for substances of abuse: endogenous morphine. Neuro Endocrinol. Lett. 29, 63-66.
151. Zis, A. P., Haskett, R. F., Albala, A. A., Carroll, B. J. (1983) Escape from dexamethasone suppression: possible role of an impaired inhibitory opioid mechanism. Prog. Neuropsychopharmacol. Biol. Psychiatry 7, 563-568. <https://doi.org/10.1016/0278-5846(83)90026-X>
152. Zis, A. P., Remick, R. A., Clark, C. M., Goldner, E., Grant, B. E., Brown, G. M. (1989) Effect of morphine on cortisol and prolactin secretion in anorexia nervosa and depression. Clin. Endocrinol. (Oxf) 30, 421-427. <https://doi.org/10.1111/j.1365-2265.1989.tb00441.x>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive