Fol. Biol. 2011, 57, 3-11
https://doi.org/10.14712/fb2011057010003
A Fraction of MCM 2 Proteins Remain Associated with Replication Foci During a Major Part of S Phase
References
1. 2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res. 14, 707-733.
< , H., Cremer, M., Tiberi, C., Vecchio, L., Schermelleh, L., Dittrich, S., Kupper, K., Joffe, B., Thormeyer, T., von Hase, J., Yang, S., Rohr, K., Leonhardt, H., Solovei, I., Cremer, C., Fakan, S., Cremer, T. (https://doi.org/10.1007/s10577-006-1086-x>
2. 1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91, 59-69.
< , O. M., Weinstein, D. M., Bell, S. P. (https://doi.org/10.1016/S0092-8674(01)80009-X>
3. 2008) Histone modifications and nuclear architecture: a review. J. Histochem. Cytochem. 56, 711-721.
< , E., Krejci, J., Harnicarova, A., Galiova, G., Kozubek, S. (https://doi.org/10.1369/jhc.2008.951251>
4. 2002) DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333-374.
< , S. P., Dutta, A. (https://doi.org/10.1146/annurev.biochem.71.110601.135425>
5. 2008) Replication forks, chromatin loops and dormant replication origins. Genome Biol. 9, 244.
< , J. J., Ge, X. Q. (https://doi.org/10.1186/gb-2008-9-12-244>
6. 2009) The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol. Mol. Biol. Rev. 73, 652-683.
< , M. L., Schwacha, A. (https://doi.org/10.1128/MMBR.00019-09>
7. 1995) Interactions of human nuclear proteins P1Mcm3 and P1Cdc46. Eur. J. Biochem. 228, 431-438.
< , R., Schulte, D., Hu, D., Musahl, C., Gohring, F.. Knippers, R. (https://doi.org/10.1111/j.1432-1033.1995.tb20281.x>
8. 2005) Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 19, 1905-1919.
< , A., Hodgson, B., Kanemaki, M., Bueno, A., Labib, K. (https://doi.org/10.1101/gad.337205>
9. 1995) Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 375, 418-421.
< , J. P., Mahbubani, H. M., Khoo, C. Y., Blow, J. J. (https://doi.org/10.1038/375418a0>
10. 2002) Visualization of replication initiation and elongation in Drosophila. J. Cell Biol. 159, 225-236.
< , J. M., MacAlpine, D. M., Evans, J. G., Bell, S. P., Orr-Weaver, T. L. (https://doi.org/10.1083/jcb.200207046>
11. 2009) Structural biology of MCM helicases. Crit. Rev. Biochem. Mol. Biol. 44, 326-342.
< , A., Onesti, S. (https://doi.org/10.1080/10409230903186012>
12. 2003) Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. J. Biol. Chem. 278, 4491-4499.
< , M. J., Indiani, C., O’Donnell, M. (https://doi.org/10.1074/jbc.M210511200>
13. 1999) Mcm2, but not RPA, is a component of the mammalian early G1-phase prereplication complex. J. Cell Biol. 146, 709-722.
< , D. S., Todorov, I. T., Melendy, T., Gilbert, D. M. (https://doi.org/10.1083/jcb.146.4.709>
14. 2002) MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J. Biol. Chem. 277, 33049-33057.
< , M. C., Tutter, A. V., Cvetic, C., Gilbert, C. H., Prokhorova, T. A., Walter, J. C. (https://doi.org/10.1074/jbc.M204438200>
15. 2004) Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J. Cell Biol. 165, 789-800.
< , S., Mendez, J., Tedesco, D., Zetterberg, A., Stillman, B., Reed, S. I. (https://doi.org/10.1083/jcb.200404092>
16. 2004) Eukaryotic MCM proteins: beyond replication initiation. Microbiol. Mol. Biol. Rev. 68, 109-131.
< , S. L. (https://doi.org/10.1128/MMBR.68.1.109-131.2004>
17. 2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 8, 358-366.
< , A., Jones, R. C., Sanchez-Diaz, A., Kanemaki, M., van Deursen, F., Edmondson, R. D., Labib, K. (https://doi.org/10.1038/ncb1382>
18. 2002) Replication timing and transcriptional control: beyond cause and effect. Curr. Opin. Cell Biol. 14, 377-383.
< , D. M. (https://doi.org/10.1016/S0955-0674(02)00326-5>
19. 2010) Evaluating genome-scale approaches to eukaryotic DNA replication. Nat. Rev. Genet. 11, 673-684.
< , D. M. (https://doi.org/10.1038/nrg2830>
20. 2003) Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem. Bioessays 25, 116-125.
< , O., Marheineke, K., Goldar, A. (https://doi.org/10.1002/bies.10208>
21. 2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol. Cell 37, 247-258.
< , I., Petojevic, T., Pesavento, J. J., Botchan, M. R. (https://doi.org/10.1016/j.molcel.2009.12.030>
22. 2005) Electron microscopy of DNA replication in 3-D: evidence for similar-sized replication foci throughout S-phase. J. Cell. Biochem. 94, 126-138.
< , K., Ligasova, A., Malinsky, J., Pliss, A., Siegel, A. J., Cvackova, Z., Fidlerova, H., Masata, M., Fialova, M., Raska, I., Berezney, R. (https://doi.org/10.1002/jcb.20300>
23. 1996) Human replication proteins hCdc21, hCdc46 and P1Mcm3 bind chromatin uniformly before S-phase and are displaced locally during DNA replication. J. Cell Sci. 109 (Pt 2), 309-318.
< , T., Musahl, C., Laskey, R. A., Knippers, R. (https://doi.org/10.1242/jcs.109.2.309>
24. 2003) A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep. 4, 26-30.
< , R. A., Madine, M. A. (https://doi.org/10.1038/sj.embor.embor706>
25. 2000) Dynamics of DNA replication factories in living cells. J. Cell Biol. 149, 271-280.
< , H., Rahn, H. P., Weinzierl, P., Sporbert, A., Cremer, T., Zink, D., Cardoso, M. C. (https://doi.org/10.1083/jcb.149.2.271>
26. 1998) Recruitment of phosphorylated chromatin assembly factor 1 to chromatin after UV irradiation of human cells. J. Cell Biol. 143, 563-575.
< , E., Roche, D. M., Marheineke, K., Verreault, A., Almouzni, G. (https://doi.org/10.1083/jcb.143.3.563>
27. 2005) Dynamics of replication foci in early S phase as visualized by cross-correlation function. J. Struct. Biol. 151, 61-68.
< , M., Malinsky, J., Fidlerova, H., Smirnov, E., Raska, I. (https://doi.org/10.1016/j.jsb.2005.03.011>
28. 1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043-1053.
< , T. J., Kirschner, M. W. (https://doi.org/10.1016/S0092-8674(00)81209-X>
29. 2010) Eukaryotic DNA replication origins: many choices for appropriate answers. Nat. Rev. 11, 728-738.
< , M. (https://doi.org/10.1038/nrm2976>
30. 2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. USA 103, 10236-10241.
< , S. E., Lewis, P. W., Botchan, M. R. (https://doi.org/10.1073/pnas.0602400103>
31. 2001) Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411, 1068-1073.
< , V. Q., Co, C., Li, J. J. (https://doi.org/10.1038/35082600>
32. 2006) Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol. Cell 21, 581-587.
< , M., Tutter, A. V., Kubota, Y., Takisawa, H., Walter, J. C. (https://doi.org/10.1016/j.molcel.2006.01.030>
33. 2004) Dynamics of pre-replication complex proteins during the cell division cycle. Phil. Trans. R. Soc. Lond. 359, 7-16.
< , S. G., Mendez, J., Prasanth, K. V., Stillman, B. (https://doi.org/10.1098/rstb.2003.1360>
34. 1989) Ultrastructural immunolocalization of cyclin/PCNA in synchronized 3T3 cells. Exp. Cell Res. 184, 81-89.
< , I., Koberna, K., Jarnik, M., Petrasovicova, V., Bednar, J., Raska, K., Jr., Bravo, R. (https://doi.org/10.1016/0014-4827(89)90366-2>
35. 1991) Ultrastructural cryoimmunocytochemistry is a convenient tool for the study of DNA replication in cultured cells. J. Electron Microsc. Tech. 18, 91-105.
< , I., Michel, L. S., Jarnik, M., Dundr, M., Fakan, S., Gasser, S., Gassmann, M., Hubscher, U., Izaurralde, E., Martinez, E., Richter, A., Dubochet, J. (https://doi.org/10.1002/jemt.1060180202>
36. 2009) Concerted loading of Mcm27 double hexamers around DNA during DNA replication origin licensing. Cell 139, 719-730.
< , D., Beuron, F., Tolun, G., Griffith, J. D., Morris, E. P. and Diffley, J. F. (https://doi.org/10.1016/j.cell.2009.10.015>
37. 2007) Experimental evidence for the influence of molecular crowding on nuclear architecture. J. Cell Sci. 120, 1673-1680.
< , K., Nessling, M., Lichter, P. (https://doi.org/10.1242/jcs.03440>
38. 1998) Human minichromosome maintenance proteins and human origin recognition complex 2 protein on chromatin. J. Biol. Chem. 273, 24543-24549.
< , M., Baack, M., Musahl, C., Romanowski, P., Laskey, R. A., Knippers, R. (https://doi.org/10.1074/jbc.273.38.24543>
39. 2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA 105, 2415-2420.
< , A., Mitchison, T. J. (https://doi.org/10.1073/pnas.0712168105>
40. 1996) Properties of the human nuclear protein p85Mcm. Expression, nuclear localization and interaction with other Mcm proteins. Eur. J. Biochem. 235, 144-151.
< , D., Richter, A., Burkhart, R., Musahl, C., Knippers, R. (https://doi.org/10.1111/j.1432-1033.1996.00144.x>
41. 1996) Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons. J. Cell Sci. 109 (Pt 4), 787-792.
< , B., van Binnendijk, E. P., Hornsby, C. D., van der Voort, H. T., Krozowski, Z. S., de Kloet, E. R., van Driel, R. (https://doi.org/10.1242/jcs.109.4.787>
42. 2005) Pumps, paradoxes and ploughshares: mechanism of the MCM2-7 DNA helicase. Trends Biochem. Sci. 30, 437-444.
< , T. S., Wigley, D. B., Walter, J. C. (https://doi.org/10.1016/j.tibs.2005.06.007>
43. 1995) BM28, a human member of the MCM2-3-5 family, is displaced from chromatin during DNA replication. J. Cell Sci. 129, 1433-1445.
, I. T., Attaran, A., Kearsey, S. E. (