Fol. Biol. 2011, 57, 41-46
https://doi.org/10.14712/fb2011057020041
The Importance of Senescence in Ionizing Radiation-Induced Tumour Suppression
References
1. 2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006-1018.
< , J. C. (https://doi.org/10.1016/j.cell.2008.03.038>
2. 2008) Control of senescence by CXCR2 and its ligands. Cell Cycle 7, 2956-2959.
< , J. C., O’Loghlen, A., Banito, A., Raguz, S., Gil, J. (https://doi.org/10.4161/cc.7.19.6780>
3. 2007) Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 397, 84-93.
< , P. D. (https://doi.org/10.1016/j.gene.2007.04.020>
4. 2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194-198.
di Fagagna, F., Reaper, P. M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., Carter, N. P., Jackson, S. P. (
5. 2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499-506.
< , C., Kastan, M. B. (https://doi.org/10.1038/nature01368>
6. 2008) Cytokine loops driving senescence. Nat. Cell Biol. 10, 887-889.
< , J., Hodny, Z., Lukas, J. (https://doi.org/10.1038/ncb0808-887>
7. 2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870.
< , J., Horejsí, Z., Koed, K., Krämer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M., Nesland, J. M., Lukas, C., Ørntoft, T., Lukas, J., Bartek, J. (https://doi.org/10.1038/nature03482>
8. 2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633-637.
< , J., Rezaei, N., Liontos, M., Karakaidos, P., Kletsas, D., Issaeva, N., Vassiliou, L. V., Kolettas, E., Niforou, K., Zoumpourlis, V. C., Takaoka, M., Nakagawa, H., Tort, F., Fugger, K., Johansson, F., Sehested, M., Andersen, C. L., Dyrskjot, L., Ørntoft, T., Lukas, J., Kittas, C., Helleday, T., Halazonetis, T. D., Bartek, J., Gorgoulis, V. G. (https://doi.org/10.1038/nature05268>
9. 2006) Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 73, 195-206.
< , S., Lukas, C., Kitagawa, R., Melander, F., Kastan, M. B., Bartek, J., Lukas, J. (https://doi.org/10.1083/jcb.200510130>
10. 1928) The immortality of animal tissues and its significance. Can. Med. Assoc. J. 18, 327-329.
, A. (
11. 2005) Tumour biology: senescence in premalignant tumours. Nature 436, 636-637.
< , M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., Benguria, A., Zaballos, A., Flores, J. M., Barbacid, M., Beach, D., Serrano, M. (https://doi.org/10.1038/436642a>
12. 2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Ann. Rev. Pathol. 5, 99-118.
< , J. P., Desprez, P. Y., Krtolica, A., Campisi, J. (https://doi.org/10.1146/annurev-pathol-121808-102144>
13. 2009) Protocols to detect senescence-associated β-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 4, 1798-1806.
< , F., Erusalimsky, J. D., Campisi, J., Toussaint, O. (https://doi.org/10.1038/nprot.2009.191>
14. 1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363-9367.
< , G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O., Peacocke, M., Campisi, J. (https://doi.org/10.1073/pnas.92.20.9363>
15. 2005) What has senescence got to do with cancer? Cancer Cell 7, 505-512.
< , G. P. (https://doi.org/10.1016/j.ccr.2005.05.025>
16. 2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907-913.
< , V. G., Vassiliou, L. V., Karakaidos, .P, Zacharatos, P., Kotsinas, A., Liloglou, T., Venere, M., Ditullio, R. A. Jr., Kastrinakis, N. G., Levy, B., Kletsas, D., Yoneta, A., Herlyn, M., Kittas, C., Halazonetis, T. D. (https://doi.org/10.1038/nature03485>
17. 1990) Telomeres shorten during ageing of human fibroblasts. Nature 345, 458-460.
< , C. B., Futcher, A. B., Greider, C. W. (https://doi.org/10.1038/345458a0>
18. 1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621.
< , L., Moorhead, P. S. (https://doi.org/10.1016/0014-4827(61)90192-6>
19. 2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell 14, 501-513.
< , U., Jobling, W. A., Chen, B. P., Chen, D. J., Sedivy, J. M. (https://doi.org/10.1016/S1097-2765(04)00256-4>
20. 2005) p53Dependent accelerated senescence induced by ionizing radiation in breast tumour cells. Int. J. Radiat. Biol. 81, 445-458.
< , K. R., Elmore, L. W., Jackson-Cook, C., Demasters, G., Povirk, L. F., Holt, S. E., Gewirtz, D. A. (https://doi.org/10.1080/09553000500168549>
21. 2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019-1031.
< , T., Michaloglou, C., Vredeveld, L. C., Douma, S., van Doorn, R., Desmet, C. J., Aarden, L. A., Mooi, W. J., Peeper, D. S. (https://doi.org/10.1016/j.cell.2008.03.039>
22. 2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81-94.
< , T., Peeper, D. S. (https://doi.org/10.1038/nrc2560>
23. 2006) Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 5, 187-195.
< , B. Y., Han, J. A., Im, J. S., Morrone, A., Johung, K., Goodwin, E. C., Kleijer, W. J., Di Maio, D., Hwang, E. S. (https://doi.org/10.1111/j.1474-9726.2006.00199.x>
24. 1992) Telomere end-replication problem and cell aging. J. Mol. Biol. 225, 951-960.
< , M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W., Harley, C. B.(https://doi.org/10.1016/0022-2836(92)90096-3>
25. 2010) Irradiation of adult human dental pulp stem cells provokes activation of p53, cell cycle arrest and senescence but not apoptosis. Stem Cells Dev. 19, 1855-1862.
< , D., Soukup, T., Vavrova, J., Mokry, J., Cmielova, J., Visek, B., Jiroutova, A., Havelek, R., Suchanek, J., Filip, S., English, D., Rezacova, M. (https://doi.org/10.1089/scd.2009.0449>
26. 2010) Cytokine expression and signaling in drug-induced cellular senescence. Oncogene 29, 273-284.
< , Z., Hubackova, S., Kosar, M., JanderovaRossmeislova, L., Dobrovolna, J., Vasicova, P., Vancurova, M., Horejsi, Z., Hozak, P., Bartek, J., Hodny, Z. (https://doi.org/10.1038/onc.2009.318>
27. 2000) Subsenescent telomere lengths in fibroblasts immortalized by limiting amounts of telomerase. J. Biol. Chem. 275, 10072-10076.
< , M. M., Liao, M, Herbert, B. S, Johnson, M, Holt, S. E., Liss. H. S., Shay. J. W., Wright. W. E. (https://doi.org/10.1074/jbc.275.14.10072>
28. 2008) Senescence: the good, the bad and the dysfunctional. Curr. Opin. Genet. Dev. 18, 42-47.
< , E., Stewart, S. A. (https://doi.org/10.1016/j.gde.2007.12.002>
29. 2008) Is defect in phosphorylation of Nbs1 responsible for high radiosensitivity of T-lymphocyte leukemia cells MOLT-4? Leuk. Res. 32, 1259-1267.
< , M., Tichý, A., Vávrová, J., Vokurková, D., Lukášová, E. (https://doi.org/10.1016/j.leukres.2007.12.014>
30. 2001) Radiation-induced senescencelike growth arrest requires TP53 function but not telomere shortening. Radiat. Res. 155, 248-253.
< , K., Mori, I., Nakayama, Y., Miyakoda, M., Kodama, S., Watanabe, M. (https://doi.org/10.1667/0033-7587(2001)155[0248:RISLGA]2.0.CO;2>
31. 2006). Interstitial chromatin alteration causes persistent p53 activation involved in the radiation-induced senescence-like growth arrest. Biochem. Biophys. Res. Commun. 340, 145-150.
< , M., Suzuki, K., Kodamab, S., Watanabe, M. (https://doi.org/10.1016/j.bbrc.2005.11.167>
32. 2008) Stress-induced premature senescence (SIPS). J. Radiat. Res. 49, 105-112.
< , M., Boothman, D. A. (https://doi.org/10.1269/jrr.07081>
33. 2003) Gamma irradiation results in phosphorylation of p53 at serine-392 in human T-lymphocyte leukaemia cell line MOLT-4. Folia Biol. (Praha) 49, 191-196.
, S., Vávrová, J., Řezáčová, M., Vokurková, D., Pavlová, Š., Šmardová, J., Stulík, J. (
34. 2007) γ-radiation-induced ATM-dependent signalling in human T-lymphocyte leukemic cells, MOLT-4. Acta Biochim. Pol. 54, 281-287.
< , A., Záskodová, D,, Rezácová, M., Vávrová, J., Vokurková, D., Pejchal, J., Vilasová, Z., Cerman, J., Osterreicher, J. (https://doi.org/10.18388/abp.2007_3248>
35. 2001) Radiationinduced apoptosis and cell cycle progression in TP53-deficient human leukemia cell line HL-60. Neoplasma 48, 26-33.
, J., Mareková, M., Vokurková, D. (
36. 2008) Changes in phosphorylation of histone H2A.X and p53 in response of peripheral blood lymphocytes to γ irradiation. Acta Biochim. Pol. 55, 381-390.
< , Z., Řezáčová, M., Vávrová, J., Tichý, A., Vokurková, D., Zoelzer, F., Řeháková, Z., Osterreicher, J., Lukášová, E. (https://doi.org/10.18388/abp.2008_3086>