Fol. Biol. 2011, 57, 47-56
https://doi.org/10.14712/fb2011057020047
In vitro Models for Adipose Tissue Engineering with Adipose-Derived Stem Cells Using Different Scaffolds of Natural Origin
References
1. 1992) Cellular and molecular aspects of adipose tissue development. Annu. Rev. Nutr. 12, 207-233.
< , G., Grimaldi, P., Négrel, R. (https://doi.org/10.1146/annurev.nu.12.070192.001231>
2. 2005) Engineered adipose tissue from human mesenchymal stem cells maintains predefined shape and dimension: implications in soft tissue augmentation and reconstruction. Tissue Eng. 11, 556-566.
< , A., Tang, M., Mao, J. J. (https://doi.org/10.1089/ten.2005.11.556>
3. 2002) The behavior of fat grafts in recipient areas with enhanced vascularity. Plast. Reconstr. Surg. 109, 1646-1651.
< , C. N., Celebioğlu, S., Sensöz, O., Ulusoy, G., Civelek, B., Ortak, T. (https://doi.org/10.1097/00006534-200204150-00023>
4. 2005) Engineering of volume-stable adipose tissues. Biomaterials 26, 3577-3585.
< , S. W., Kim, S. S., Rhie, J. W., Cho, H. M., Choi, C. Y., Kim, B. S. (https://doi.org/10.1016/j.biomaterials.2004.09.013>
5. 2002) Cell interactions with three-dimensional matrices. Curr. Opin. Cell. Biol. 14, 633-639.
< , E., Pankov, R., Yamada, K. M. (https://doi.org/10.1016/S0955-0674(02)00364-2>
6. 2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337-4351.
< , J. L., Mooney, D. J. (https://doi.org/10.1016/S0142-9612(03)00340-5>
7. 2004) Generation of mature fat pads in vitro and in vivo utilizing 3-D longterm culture of 3T3-L1 preadipocytes. Exp. Cell. Res. 300, 54-64.
< , C., Spruss, T., Weiser, B., Neubauer, M., Becker, C., Hacker, M., Göpferich, A., Blunk, T. (https://doi.org/10.1016/j.yexcr.2004.05.036>
8. 2007) Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells. Biomaterials 28, 3834-3842.
< , L., Prestwich, G. D., Semple, J. L., Woodhouse, K. A. (https://doi.org/10.1016/j.biomaterials.2007.05.002>
9. 2008) Adipose tissue engineering with cells in engineered matrices. Organogenesis 4, 228-235.
< , L., Woodhouse, K. A. (https://doi.org/10.4161/org.4.4.7082>
10. 2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 24, 150-154.
< , J. K., Wulur, I., Alfonso, Z., Hedrick, M. H. (https://doi.org/10.1016/j.tibtech.2006.01.010>
11. 2006) Collagen composite biomaterials resist contraction while allowing development of adipocytic soft tissue in vitro. Tissue Eng. 12, 1639-1649.
< , E., Nauman, E. A., Livesay, G. A., Dee, K. C. (https://doi.org/10.1089/ten.2006.12.1639>
12. 1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345-357.
< , B. M. (https://doi.org/10.1016/S0092-8674(00)81279-9>
13. 2003) Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I: in vitro differentiation of human adipocyte precursor cells on scaffolds. Biomaterials 24, 3125-3132.
< , M., Skurk, T., de Luca, C., von Heimburg, D., Hauner, H. (https://doi.org/10.1016/S0142-9612(03)00156-X>
14. 1995) Effects of epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) on human adipocyte development and function. Eur. J. Clin. Invest. 25, 90-96.
< , H., Röhrig, K., Petruschke, T. (https://doi.org/10.1111/j.1365-2362.1995.tb01532.x>
15. 2005) Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials 26, 7025-7037.
< , K., von Heimburg, D., Rendchen, R., Di Bartolo, C., Milella, E., Pallua, N. (https://doi.org/10.1016/j.biomaterials.2005.04.065>
16. 2006) Biomaterials for adipose tissue engineering. Expert Rev. Med. Devices 3, 635-645.
< , K., von Heimburg, D. (https://doi.org/10.1586/17434440.3.5.635>
17. 2005) Adipose tissue model using three-dimensional cultivation of preadipocytes seeded onto fibrous polymer scaffolds. Tissue Eng. 11, 458-468.
< , X., Xie, Y., Kniss, D. A. (https://doi.org/10.1089/ten.2005.11.458>
18. 1999) Emerging approaches to the tissue engineering of fat. Clin. Plast. Surg. 26, 587-603, viii.
< , A. J., Llull, R., Hedrick, M. H., Futrell, J. W. (https://doi.org/10.1016/S0094-1298(20)32659-6>
19. 1998) De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 95, 1062-1066.
< , N., Toriyama, K., Nicodemou-Lena, E., Inou, K., Torii, S., Kitagawa, Y. (https://doi.org/10.1073/pnas.95.3.1062>
20. 2006) Human serum from platelet-poor plasma for the culture of primary human preadipocytes. Stem Cells 24, 1218-1225.
< , E., von Heimburg, D., Markowicz, M., Pallua, N. (https://doi.org/10.1634/stemcells.2005-0020>
21. 1999) Development of a human adipocyte synthetic polymer scaffold. Plast. Reconstr. Surg. 104, 1732-1738.
< , J. G., Crandall, D. L. (https://doi.org/10.1097/00006534-199911000-00018>
22. 2000) Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts. Plast. Reconstr. Surg. 105, 2049-2058.
< , J. J., Guha, A., Rowley, J., Koka, R., Mooney, D., Upton, J., Vacanti, J. P. (https://doi.org/10.1097/00006534-200005000-00020>
23. 2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483-495.
< , R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., Chen, C. S. (https://doi.org/10.1016/S1534-5807(04)00075-9>
24. 2009) Autologous adipose tissue as a new source of progenitor cells for therapeutic angiogenesis. J. Cardiol. 53, 155-163.
< , T. (https://doi.org/10.1016/j.jjcc.2009.01.003>
25. 2006) Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J. Atheroscler. Thromb. 13, 77-81.
< , H., Morishita, R., Maeda, K., Kikuchi, Y., Ogihara, T., Kaneda, Y. (https://doi.org/10.5551/jat.13.77>
26. 2000) Adipose tissue engineering: the future of breast and soft tissue reconstruction following tumor resection. Semin. Surg. Oncol. 19, 302-311.
< , C. W. Jr. (https://doi.org/10.1002/1098-2388(200010/11)19:3<302::AID-SSU12>3.0.CO;2-S>
27. 2002) Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng. 8, 283-293.
< , C. W. Jr., Zheng, B., Johnston, C., Reece, G. P. (https://doi.org/10.1089/107632702753725049>
28. 2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109, 1292-1298.
< , J., Traktuev, D., Li, J., Merfeld-Clauss, S., TemmGrove, C. J., Bovenkerk, J. E., Pell, C. L., Johnstone, B. H., Considine, R. V., March, K. L. (https://doi.org/10.1161/01.CIR.0000121425.42966.F1>
29. 1999) PPAR γ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611-617.
< , E. D., Sarraf, P., Troy, A. E., Bradwin, G., Moore, K., Milstone, D. S., Spiegelman, B. M., Mortensen, R. M. (https://doi.org/10.1016/S1097-2765(00)80211-7>
30. 2001) Histomorphologic and volumetric analysis of implanted autologous preadipocyte cultures suspended in fibrin glue: a potential new source for tissue augmentation. Aesthetic. Plast. Surg. 25, 57-63. Erratum in: 2003 Aesthetic. Plast. Surg. 27, 239. Mowlawi, A. (corrected to Mowlavi A).
< , T., Lille, S., Wechselberger, G., Otto, A., Mowlavi, A., Piza-Katzer, H. (https://doi.org/10.1007/s002660010096>
31. 1996) The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta 1302, 93-109.
< , K., Staels, B., Auwerx, J. (https://doi.org/10.1016/0005-2760(96)00066-5>
32. 1992) Cell growth on collagen: a review of tissue engineering using scaffolds containing extracellular matrix. J. Long Term Eff. Med. Implants 2, 67-80.
, F. H., Pins, G. (
33. 2001) Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J. Biol. Chem. 276, 34167-34174.
< , A., Socci, D. S., Saatkamp, B. D., Novelli, S., Friedman, J. M. (https://doi.org/10.1074/jbc.M104421200>
34. 1983) Fibronectin modulation of cell shape and lipogenic gene expression in 3T3adipocytes. Cell 35, 657-666.
< , B. M., Ginty, C. A. (https://doi.org/10.1016/0092-8674(83)90098-3>
35. 2009) Fibrin glue versus sutures for attaching the conjunctival autograft in pterygium surgery: a prospective observer masked clinical trial. Br. J. Ophthalmol. 93, 215-218.
< , S., Dollin, M., McAllum, P., Berger, Y., Rootman, D. S., Slomovic, A. R. (https://doi.org/10.1136/bjo.2008.145516>
36. 2009) In vitro adipogenic differentiation of preadipocytes varies with differentiation stimulus, culture dimensionality, and scaffold composition. Tissue Eng. Part A 15, 3389-3399.
< , D. H., Hanson, S. E., Lahvis, G., Gutowski, K. A., Masters, K. S. (https://doi.org/10.1089/ten.tea.2008.0293>
37. 2009) Tissue engineering in plastic surgery: an up-to-date review of the current literature. Ann. Plast. Surg. 62, 97-103.
< , A., De Faria, J., Correa, W. E., Pitanguy, I. (https://doi.org/10.1097/SAP.0b013e3181788ec9>
38. 2008) Human autologous plasma-derived clot as a biological scaffold for mesenchymal stem cells in treatment of orthopedic healing. J. Orthop. Res. 26, 176-183.
< , L., Mattii, L., Pacini, S., D’Alessandro, D., Battolla, B., Orciuolo, E., Buda, G., Fazzi, R., Galimberti, S., Petrini, M. (https://doi.org/10.1002/jor.20490>
39. 2009) Angiogenic capacity of human adipose-derived stromal cells during adipogenic differentiation: an in vitro study. Tissue Eng. Part A 15, 445-452.
< , F., Jahr, H., Posthumus-van Sluijs, S. J., Ten Hagen, T. L., Hovius, S. E., Seynhaeve, A. L., van Neck, J. W., van Osch, G. J., Hofer, S. O. (https://doi.org/10.1089/ten.tea.2007.0429>
40. 2005) Oxygen consumption in undifferentiated versus differentiated adipogenic mesenchymal precursor cells. Respir. Physiol. Neurobiol. 146, 107-116.
< , D., Hemmrich, K., Zachariah, S., Staiger, H., Pallua, N. (https://doi.org/10.1016/j.resp.2004.12.013>
41. 2002) Successful transplantation of three tissue-engineered cell types using capsule induction technique and fibrin glue as a delivery vehicle. Plast. Reconstr. Surg. 110, 123-129.
< , G., Russell, R. C., Neumeister, M. W., Schoeller, T., Piza-Katzer, H., Rainer, C. (https://doi.org/10.1097/00006534-200207000-00022>
42. 2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211-228.
< , P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., Hedrick, M. H. (https://doi.org/10.1089/107632701300062859>