Fol. Biol. 2011, 57, 47-56

https://doi.org/10.14712/fb2011057020047

In vitro Models for Adipose Tissue Engineering with Adipose-Derived Stem Cells Using Different Scaffolds of Natural Origin

L. Girandon1, N. Kregar-Velikonja1, K. Božikov2, Ariana Barlič1

1Educell d.o.o., Ljubljana, Slovenia
2Department of Plastic Surgery and Burns, Division of Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia

Received October 2010
Accepted December 2010

References

1. Ailhaud, G., Grimaldi, P., Négrel, R. (1992) Cellular and molecular aspects of adipose tissue development. Annu. Rev. Nutr. 12, 207-233. <https://doi.org/10.1146/annurev.nu.12.070192.001231>
2. Alhadlaq, A., Tang, M., Mao, J. J. (2005) Engineered adipose tissue from human mesenchymal stem cells maintains predefined shape and dimension: implications in soft tissue augmentation and reconstruction. Tissue Eng. 11, 556-566. <https://doi.org/10.1089/ten.2005.11.556>
3. Baran, C. N., Celebioğlu, S., Sensöz, O., Ulusoy, G., Civelek, B., Ortak, T. (2002) The behavior of fat grafts in recipient areas with enhanced vascularity. Plast. Reconstr. Surg. 109, 1646-1651. <https://doi.org/10.1097/00006534-200204150-00023>
4. Cho, S. W., Kim, S. S., Rhie, J. W., Cho, H. M., Choi, C. Y., Kim, B. S. (2005) Engineering of volume-stable adipose tissues. Biomaterials 26, 3577-3585. <https://doi.org/10.1016/j.biomaterials.2004.09.013>
5. Cukierman, E., Pankov, R., Yamada, K. M. (2002) Cell interactions with three-dimensional matrices. Curr. Opin. Cell. Biol. 14, 633-639. <https://doi.org/10.1016/S0955-0674(02)00364-2>
6. Drury, J. L., Mooney, D. J. (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337-4351. <https://doi.org/10.1016/S0142-9612(03)00340-5>
7. Fischbach, C., Spruss, T., Weiser, B., Neubauer, M., Becker, C., Hacker, M., Göpferich, A., Blunk, T. (2004) Generation of mature fat pads in vitro and in vivo utilizing 3-D longterm culture of 3T3-L1 preadipocytes. Exp. Cell. Res. 300, 54-64. <https://doi.org/10.1016/j.yexcr.2004.05.036>
8. Flynn, L., Prestwich, G. D., Semple, J. L., Woodhouse, K. A. (2007) Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells. Biomaterials 28, 3834-3842. <https://doi.org/10.1016/j.biomaterials.2007.05.002>
9. Flynn, L., Woodhouse, K. A. (2008) Adipose tissue engineering with cells in engineered matrices. Organogenesis 4, 228-235. <https://doi.org/10.4161/org.4.4.7082>
10. Fraser, J. K., Wulur, I., Alfonso, Z., Hedrick, M. H. (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 24, 150-154. <https://doi.org/10.1016/j.tibtech.2006.01.010>
11. Gentleman, E., Nauman, E. A., Livesay, G. A., Dee, K. C. (2006) Collagen composite biomaterials resist contraction while allowing development of adipocytic soft tissue in vitro. Tissue Eng. 12, 1639-1649. <https://doi.org/10.1089/ten.2006.12.1639>
12. Gumbiner, B. M. (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345-357. <https://doi.org/10.1016/S0092-8674(00)81279-9>
13. Halbleib, M., Skurk, T., de Luca, C., von Heimburg, D., Hauner, H. (2003) Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I: in vitro differentiation of human adipocyte precursor cells on scaffolds. Biomaterials 24, 3125-3132. <https://doi.org/10.1016/S0142-9612(03)00156-X>
14. Hauner, H., Röhrig, K., Petruschke, T. (1995) Effects of epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) on human adipocyte development and function. Eur. J. Clin. Invest. 25, 90-96. <https://doi.org/10.1111/j.1365-2362.1995.tb01532.x>
15. Hemmrich, K., von Heimburg, D., Rendchen, R., Di Bartolo, C., Milella, E., Pallua, N. (2005) Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials 26, 7025-7037. <https://doi.org/10.1016/j.biomaterials.2005.04.065>
16. Hemmrich, K., von Heimburg, D. (2006) Biomaterials for adipose tissue engineering. Expert Rev. Med. Devices 3, 635-645. <https://doi.org/10.1586/17434440.3.5.635>
17. Kang, X., Xie, Y., Kniss, D. A. (2005) Adipose tissue model using three-dimensional cultivation of preadipocytes seeded onto fibrous polymer scaffolds. Tissue Eng. 11, 458-468. <https://doi.org/10.1089/ten.2005.11.458>
18. Katz, A. J., Llull, R., Hedrick, M. H., Futrell, J. W. (1999) Emerging approaches to the tissue engineering of fat. Clin. Plast. Surg. 26, 587-603, viii. <https://doi.org/10.1016/S0094-1298(20)32659-6>
19. Kawaguchi, N., Toriyama, K., Nicodemou-Lena, E., Inou, K., Torii, S., Kitagawa, Y. (1998) De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 95, 1062-1066. <https://doi.org/10.1073/pnas.95.3.1062>
20. Koellensperger, E., von Heimburg, D., Markowicz, M., Pallua, N. (2006) Human serum from platelet-poor plasma for the culture of primary human preadipocytes. Stem Cells 24, 1218-1225. <https://doi.org/10.1634/stemcells.2005-0020>
21. Kral, J. G., Crandall, D. L. (1999) Development of a human adipocyte synthetic polymer scaffold. Plast. Reconstr. Surg. 104, 1732-1738. <https://doi.org/10.1097/00006534-199911000-00018>
22. Marler, J. J., Guha, A., Rowley, J., Koka, R., Mooney, D., Upton, J., Vacanti, J. P. (2000) Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts. Plast. Reconstr. Surg. 105, 2049-2058. <https://doi.org/10.1097/00006534-200005000-00020>
23. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., Chen, C. S. (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483-495. <https://doi.org/10.1016/S1534-5807(04)00075-9>
24. Murohara, T. (2009) Autologous adipose tissue as a new source of progenitor cells for therapeutic angiogenesis. J. Cardiol. 53, 155-163. <https://doi.org/10.1016/j.jjcc.2009.01.003>
25. Nakagami, H., Morishita, R., Maeda, K., Kikuchi, Y., Ogihara, T., Kaneda, Y. (2006) Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J. Atheroscler. Thromb. 13, 77-81. <https://doi.org/10.5551/jat.13.77>
26. Patrick, C. W. Jr. (2000) Adipose tissue engineering: the future of breast and soft tissue reconstruction following tumor resection. Semin. Surg. Oncol. 19, 302-311. <https://doi.org/10.1002/1098-2388(200010/11)19:3<302::AID-SSU12>3.0.CO;2-S>
27. Patrick, C. W. Jr., Zheng, B., Johnston, C., Reece, G. P. (2002) Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng. 8, 283-293. <https://doi.org/10.1089/107632702753725049>
28. Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., TemmGrove, C. J., Bovenkerk, J. E., Pell, C. L., Johnstone, B. H., Considine, R. V., March, K. L. (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109, 1292-1298. <https://doi.org/10.1161/01.CIR.0000121425.42966.F1>
29. Rosen, E. D., Sarraf, P., Troy, A. E., Bradwin, G., Moore, K., Milstone, D. S., Spiegelman, B. M., Mortensen, R. M. (1999) PPAR γ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611-617. <https://doi.org/10.1016/S1097-2765(00)80211-7>
30. Schoeller, T., Lille, S., Wechselberger, G., Otto, A., Mowlavi, A., Piza-Katzer, H. (2001) Histomorphologic and volumetric analysis of implanted autologous preadipocyte cultures suspended in fibrin glue: a potential new source for tissue augmentation. Aesthetic. Plast. Surg. 25, 57-63. Erratum in: 2003 Aesthetic. Plast. Surg. 27, 239. Mowlawi, A. (corrected to Mowlavi A). <https://doi.org/10.1007/s002660010096>
31. Schoonjans, K., Staels, B., Auwerx, J. (1996) The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta 1302, 93-109. <https://doi.org/10.1016/0005-2760(96)00066-5>
32. Silver, F. H., Pins, G. (1992) Cell growth on collagen: a review of tissue engineering using scaffolds containing extracellular matrix. J. Long Term Eff. Med. Implants 2, 67-80.
33. Soukas, A., Socci, D. S., Saatkamp, B. D., Novelli, S., Friedman, J. M. (2001) Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J. Biol. Chem. 276, 34167-34174. <https://doi.org/10.1074/jbc.M104421200>
34. Spiegelman, B. M., Ginty, C. A. (1983) Fibronectin modulation of cell shape and lipogenic gene expression in 3T3adipocytes. Cell 35, 657-666. <https://doi.org/10.1016/0092-8674(83)90098-3>
35. Srinivasan, S., Dollin, M., McAllum, P., Berger, Y., Rootman, D. S., Slomovic, A. R. (2009) Fibrin glue versus sutures for attaching the conjunctival autograft in pterygium surgery: a prospective observer masked clinical trial. Br. J. Ophthalmol. 93, 215-218. <https://doi.org/10.1136/bjo.2008.145516>
36. Stacey, D. H., Hanson, S. E., Lahvis, G., Gutowski, K. A., Masters, K. S. (2009) In vitro adipogenic differentiation of preadipocytes varies with differentiation stimulus, culture dimensionality, and scaffold composition. Tissue Eng. Part A 15, 3389-3399. <https://doi.org/10.1089/ten.tea.2008.0293>
37. Sterodimas, A., De Faria, J., Correa, W. E., Pitanguy, I. (2009) Tissue engineering in plastic surgery: an up-to-date review of the current literature. Ann. Plast. Surg. 62, 97-103. <https://doi.org/10.1097/SAP.0b013e3181788ec9>
38. Trombi, L., Mattii, L., Pacini, S., D’Alessandro, D., Battolla, B., Orciuolo, E., Buda, G., Fazzi, R., Galimberti, S., Petrini, M. (2008) Human autologous plasma-derived clot as a biological scaffold for mesenchymal stem cells in treatment of orthopedic healing. J. Orthop. Res. 26, 176-183. <https://doi.org/10.1002/jor.20490>
39. Verseijden, F., Jahr, H., Posthumus-van Sluijs, S. J., Ten Hagen, T. L., Hovius, S. E., Seynhaeve, A. L., van Neck, J. W., van Osch, G. J., Hofer, S. O. (2009) Angiogenic capacity of human adipose-derived stromal cells during adipogenic differentiation: an in vitro study. Tissue Eng. Part A 15, 445-452. <https://doi.org/10.1089/ten.tea.2007.0429>
40. von Heimburg, D., Hemmrich, K., Zachariah, S., Staiger, H., Pallua, N. (2005) Oxygen consumption in undifferentiated versus differentiated adipogenic mesenchymal precursor cells. Respir. Physiol. Neurobiol. 146, 107-116. <https://doi.org/10.1016/j.resp.2004.12.013>
41. Wechselberger, G., Russell, R. C., Neumeister, M. W., Schoeller, T., Piza-Katzer, H., Rainer, C. (2002) Successful transplantation of three tissue-engineered cell types using capsule induction technique and fibrin glue as a delivery vehicle. Plast. Reconstr. Surg. 110, 123-129. <https://doi.org/10.1097/00006534-200207000-00022>
42. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., Hedrick, M. H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211-228. <https://doi.org/10.1089/107632701300062859>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive