Fol. Biol. 2011, 57, 96-103
https://doi.org/10.14712/fb2011057030096
Glucose and Its Metabolites Have Distinct Effects on the Calcium-Induced Mitochondrial Permeability Transition
References
1. 2006) The role of the mitochondrial permeability transition in cell death. Mitochondrion 6, 225-234.
< , J. S. (https://doi.org/10.1016/j.mito.2006.07.006>
2. 2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273, 2077-2099.
< , P., Krauskopf, A., Basso, E., Petronilli, V., Blachly Dyson, E., Di Lisa, F., Forte, M. A. (https://doi.org/10.1111/j.1742-4658.2006.05213.x>
3. 2005) The pathobiology of diabetic complications. A unifying mechanism. Diabetes 54, 1615-1625.
< , M. (https://doi.org/10.2337/diabetes.54.6.1615>
4. 2005) Isolated mouse liver mitochondria are devoid of glucokinase. Biochem. Biophys. Res. Commun. 334, 907-910.
< , E., Pediaditakis, P., He, L., Lemasters, J. J. (https://doi.org/10.1016/j.bbrc.2005.06.174>
5. 1998) Evidence of high levels of methylglyoxal in cultured Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 95, 5533-5538.
< , F. R. W., Fahl, W. E., Cameron, D. C. (https://doi.org/10.1073/pnas.95.10.5533>
6. 2005) Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 54, 2179-2187.
< , D., Guigas, B., Chauvin, C., Batandier, C., Fontaine, E., Wiernsperger, N., Leverve, X. (https://doi.org/10.2337/diabetes.54.7.2179>
7. 2001) Diabetogenic effect of cyclosporin A is mediated by interference with mitochondrial function of pancreatic B-cells. Mol. Pharmacol. 60, 873-879.
, M., Krippeit-Drews, P., Lembert, N., Idahl, L. A., Drews, G. (
8. 1988) Calcium transport and energy coupling in diabetic rat liver mitochondria. Biochem. Int. 17, 329-335.
, L., Bedetti, C. D., Stoppani, A. O. (
9. 1990) Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258, C755-C786.
< , T. E., Pfeiffer, D. R. (https://doi.org/10.1152/ajpcell.1990.258.5.C755>
10. 2009) What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol. 46, 821-831.
< , A. P. (https://doi.org/10.1016/j.yjmcc.2009.02.021>
11. 1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J. Biol. Chem. 251, 5069-5077.
< , D. R., Haworth, R. A., Southard, J. H. (https://doi.org/10.1016/S0021-9258(17)33220-9>
12. 1979) The Ca2+-induced membrane transition in mitochondria, I. The protective mechanisms. Arch. Biochem. Biophys. 195, 453-459.
< , D. R., Haworth, R. A. (https://doi.org/10.1016/0003-9861(79)90371-0>
13. 2002) Inhibition of the mitochondrial permeability transition by aldehydes. Biochem. Biophys. Res. Commun. 291, 215-219.
< , W. A., Gaspers, L. D., Thomas, J. A. (https://doi.org/10.1006/bbrc.2002.6457>
14. 1996) Abnormalities in the mitochondrial permeability transition in diabetic rats. Biochem. Biophys. Res. Commun. 222, 519-523.
< , B. S., Matsuda, M., Yu, B. P. (https://doi.org/10.1006/bbrc.1996.0776>
15. 2007) Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99-163.
< , G., Galluzzi, L., Brenner, C. (https://doi.org/10.1152/physrev.00013.2006>
16. 2008) Mitochondrial dysfunction is a possible cause of accelerated senescence of mesothelial cells exposed to high glucose. Biochem. Biophys. Res. Commun. 366, 793-799.
< , K., Passos, J. F., Olijslagers, S., von Zglinicki, T. (https://doi.org/10.1016/j.bbrc.2007.12.021>
17. 1979) Preparation of synaptic and nonsynaptic mitochondria from mammalian brain. Methods Enzymol. 55, 51-60.
< , J. C. K., Clark, J. B. (https://doi.org/10.1016/0076-6879(79)55008-3>
18. 2006) Voltage-dependent anion channel (VDAC) as mitochondrial governator – thinking outside the box. Biochim. Biophys. Acta 1762, 181-190.
< , J. J., Holmuhamedov, E. (https://doi.org/10.1016/j.bbadis.2005.10.006>
19. 1998) Mitochondria – the Kraken wakes! Trends Neurosci. 21, 95-97.
< , R. J. (https://doi.org/10.1016/S0166-2236(97)01206-X>
20. 1997) A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J. Immunol. Methods 202, 133-141.
< , J. G., Jaffe, J. S., Schulman, E. S., Raible, D. G. (https://doi.org/10.1016/S0022-1759(96)00244-X>
21. 1979) Overview – preparation and properties of mitochondria from different sources. Methods Enzymol. 55, 3-28.
< , J., Cannon, B. (https://doi.org/10.1016/0076-6879(79)55003-4>
22. 2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787-790.
< , T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P., Giardino, I., Brownlee, M. (https://doi.org/10.1038/35008121>
23. 2001) Decreased susceptibility of heart mitochondria from diabetic GK rats to mitochondrial permeability transition induced by calcium phosphate. Biosci. Rep. 21, 45-53.
< , P. J., Rolo, A. P., Seica, R., Palmeira, C. M., Santos, M. S., Moreno, A. J. M. (https://doi.org/10.1023/A:1010482017540>
24. 2003) Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats. FEBS Lett. 554, 511-514.
< , P. J., Seica, R., Coxito, P. M., Rolo, A. P., Palmeira, C. M., Santos, M. S., Moreno, A. J. M. (https://doi.org/10.1016/S0014-5793(03)01233-X>
25. 2004) Calcium-dependent mitochondrial permeability transition is augmented in the kidney of GotoKakizaki diabetic rat. Diabetes Metab. Res. Rev. 20, 131-136.
< , P. J., Esteves, T. C., Seica, R., Moreno, A. J. M., Santos, M. S. (https://doi.org/10.1002/dmrr.423>
26. 2008) Dicarbonyls linked to damage in the powerhouse: glycation of mitochondrial proteins and oxidative stress. Biochem. Soc. Trans. 36 (Pt 5), 1045-1050.
< , N., Thornalley, P. J. (https://doi.org/10.1042/BST0361045>
27. 2005) Oxidative and nitrosative stress in kidney disease: a case for cyclosporine A. J. Nephrol. 18, 453-457.
, M., Lamas, S. (
28. 2005) The burden of mortality attributable to diabetes. Realistic estimates for the year 2000. Diabetes Care 28, 2130-2135.
< , G., Unwin, N., Bennett, P. H., Mathers, C., Tuomilehto, J., Nag, S., Connolly, V., King, H. (https://doi.org/10.2337/diacare.28.9.2130>
29. 2005) Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am. J. Physiol. Renal Physiol. 289, F420-F430.
< , M. G., Mustata, T. G., Kinter, M. T., Ozdemir, A. M., Kern, T. S., Szweda, L. I., Brownlee, M., Monnier, V. M., Weiss, M. F. (https://doi.org/10.1152/ajprenal.00415.2004>
30. 1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Lett. 397, 7-10.
< , V. P. (https://doi.org/10.1016/0014-5793(96)00989-1>
31. 2003) Rapid suppression of mitochondrial permeability transition by methylglyoxal. Role of reversible arginine modification. J. Biol. Chem. 278, 34757-34763.
< , O., Morkunaite-Haimi, S., Liobikas, J., Franck, M., Hensbo, L., Linder, M. D., Kinnunen, P. K. J., Wallimann, T., Eriksson, O. (https://doi.org/10.1074/jbc.M301990200>
32. Škrha, J., Andělová, K., Bendlová, B., Broulíková, A., Cinek, O., Čechurová, D., Haluzík, M., Jirkovská, A., Kalvodová, B., Krejčí, H., Krupičková, Z., Lacigová, S., Lebl, J., Pelikánová, T., Perušičová, J., Prázný, M., Průhová, Š., Rušavý, Z., Rybka, J., Saudek, F., Svačina, Š., Šmahelová, A., Tesař, V., Widimský J. jr. (2009) Diabetology. Galén, Prague. (in Czech)
33. 2007) Cyclosporin A-induced oxidative stress is not the consequence of an increase in mitochondrial membrane potential. FEBS J. 274, 3003-3012.
< , M., Kauffman, H. F., van der Deen, M., Slebos, D. J., Koëter, G. H., Gans, R. O. B., Bakker, S. J. L. (https://doi.org/10.1111/j.1742-4658.2007.05827.x>
34. 2007) Stimulation of H2O2 generation by calcium in brain mitochondria respiring on α-glycerophosphate. J. Neurosci. Res. 85, 3471-3479.
< , L., Takacs, K., Kövér, K., Adam-Vizi, V. (https://doi.org/10.1002/jnr.21405>