Fol. Biol. 2011, 57, 96-103

https://doi.org/10.14712/fb2011057030096

Glucose and Its Metabolites Have Distinct Effects on the Calcium-Induced Mitochondrial Permeability Transition

J. Škrha, Jr., J. Gáll, R. Buchal, E. Sedláčková, Jan Pláteník

Institute of Medical Biochemistry, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic

Received August 2010
Accepted March 2011

References

1. Armstrong, J. S. (2006) The role of the mitochondrial permeability transition in cell death. Mitochondrion 6, 225-234. <https://doi.org/10.1016/j.mito.2006.07.006>
2. Bernardi, P., Krauskopf, A., Basso, E., Petronilli, V., Blachly Dyson, E., Di Lisa, F., Forte, M. A. (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273, 2077-2099. <https://doi.org/10.1111/j.1742-4658.2006.05213.x>
3. Brownlee, M. (2005) The pathobiology of diabetic complications. A unifying mechanism. Diabetes 54, 1615-1625. <https://doi.org/10.2337/diabetes.54.6.1615>
4. Bustamante, E., Pediaditakis, P., He, L., Lemasters, J. J. (2005) Isolated mouse liver mitochondria are devoid of glucokinase. Biochem. Biophys. Res. Commun. 334, 907-910. <https://doi.org/10.1016/j.bbrc.2005.06.174>
5. Chaplen, F. R. W., Fahl, W. E., Cameron, D. C. (1998) Evidence of high levels of methylglyoxal in cultured Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 95, 5533-5538. <https://doi.org/10.1073/pnas.95.10.5533>
6. Detaille, D., Guigas, B., Chauvin, C., Batandier, C., Fontaine, E., Wiernsperger, N., Leverve, X. (2005) Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 54, 2179-2187. <https://doi.org/10.2337/diabetes.54.7.2179>
7. Düfer, M., Krippeit-Drews, P., Lembert, N., Idahl, L. A., Drews, G. (2001) Diabetogenic effect of cyclosporin A is mediated by interference with mitochondrial function of pancreatic B-cells. Mol. Pharmacol. 60, 873-879.
8. Grinblat, L., Bedetti, C. D., Stoppani, A. O. (1988) Calcium transport and energy coupling in diabetic rat liver mitochondria. Biochem. Int. 17, 329-335.
9. Gunter, T. E., Pfeiffer, D. R. (1990) Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258, C755-C786. <https://doi.org/10.1152/ajpcell.1990.258.5.C755>
10. Halestrap, A. P. (2009) What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol. 46, 821-831. <https://doi.org/10.1016/j.yjmcc.2009.02.021>
11. Hunter, D. R., Haworth, R. A., Southard, J. H. (1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J. Biol. Chem. 251, 5069-5077. <https://doi.org/10.1016/S0021-9258(17)33220-9>
12. Hunter, D. R., Haworth, R. A. (1979) The Ca2+-induced membrane transition in mitochondria, I. The protective mechanisms. Arch. Biochem. Biophys. 195, 453-459. <https://doi.org/10.1016/0003-9861(79)90371-0>
13. Irwin, W. A., Gaspers, L. D., Thomas, J. A. (2002) Inhibition of the mitochondrial permeability transition by aldehydes. Biochem. Biophys. Res. Commun. 291, 215-219. <https://doi.org/10.1006/bbrc.2002.6457>
14. Kristal, B. S., Matsuda, M., Yu, B. P. (1996) Abnormalities in the mitochondrial permeability transition in diabetic rats. Biochem. Biophys. Res. Commun. 222, 519-523. <https://doi.org/10.1006/bbrc.1996.0776>
15. Kroemer, G., Galluzzi, L., Brenner, C. (2007) Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99-163. <https://doi.org/10.1152/physrev.00013.2006>
16. Ksiazek, K., Passos, J. F., Olijslagers, S., von Zglinicki, T. (2008) Mitochondrial dysfunction is a possible cause of accelerated senescence of mesothelial cells exposed to high glucose. Biochem. Biophys. Res. Commun. 366, 793-799. <https://doi.org/10.1016/j.bbrc.2007.12.021>
17. Lai, J. C. K., Clark, J. B. (1979) Preparation of synaptic and nonsynaptic mitochondria from mammalian brain. Methods Enzymol. 55, 51-60. <https://doi.org/10.1016/0076-6879(79)55008-3>
18. Lemasters, J. J., Holmuhamedov, E. (2006) Voltage-dependent anion channel (VDAC) as mitochondrial governator – thinking outside the box. Biochim. Biophys. Acta 1762, 181-190. <https://doi.org/10.1016/j.bbadis.2005.10.006>
19. Miller, R. J. (1998) Mitochondria – the Kraken wakes! Trends Neurosci. 21, 95-97. <https://doi.org/10.1016/S0166-2236(97)01206-X>
20. Mohanty, J. G., Jaffe, J. S., Schulman, E. S., Raible, D. G. (1997) A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J. Immunol. Methods 202, 133-141. <https://doi.org/10.1016/S0022-1759(96)00244-X>
21. Nedergaard, J., Cannon, B. (1979) Overview – preparation and properties of mitochondria from different sources. Methods Enzymol. 55, 3-28. <https://doi.org/10.1016/0076-6879(79)55003-4>
22. Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P., Giardino, I., Brownlee, M. (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787-790. <https://doi.org/10.1038/35008121>
23. Oliveira, P. J., Rolo, A. P., Seica, R., Palmeira, C. M., Santos, M. S., Moreno, A. J. M. (2001) Decreased susceptibility of heart mitochondria from diabetic GK rats to mitochondrial permeability transition induced by calcium phosphate. Biosci. Rep. 21, 45-53. <https://doi.org/10.1023/A:1010482017540>
24. Oliveira, P. J., Seica, R., Coxito, P. M., Rolo, A. P., Palmeira, C. M., Santos, M. S., Moreno, A. J. M. (2003) Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats. FEBS Lett. 554, 511-514. <https://doi.org/10.1016/S0014-5793(03)01233-X>
25. Oliveira, P. J., Esteves, T. C., Seica, R., Moreno, A. J. M., Santos, M. S. (2004) Calcium-dependent mitochondrial permeability transition is augmented in the kidney of GotoKakizaki diabetic rat. Diabetes Metab. Res. Rev. 20, 131-136. <https://doi.org/10.1002/dmrr.423>
26. Rabbani, N., Thornalley, P. J. (2008) Dicarbonyls linked to damage in the powerhouse: glycation of mitochondrial proteins and oxidative stress. Biochem. Soc. Trans. 36 (Pt 5), 1045-1050. <https://doi.org/10.1042/BST0361045>
27. Redondo-Horcajo, M., Lamas, S. (2005) Oxidative and nitrosative stress in kidney disease: a case for cyclosporine A. J. Nephrol. 18, 453-457.
28. Roglic, G., Unwin, N., Bennett, P. H., Mathers, C., Tuomilehto, J., Nag, S., Connolly, V., King, H. (2005) The burden of mortality attributable to diabetes. Realistic estimates for the year 2000. Diabetes Care 28, 2130-2135. <https://doi.org/10.2337/diacare.28.9.2130>
29. Rosca, M. G., Mustata, T. G., Kinter, M. T., Ozdemir, A. M., Kern, T. S., Szweda, L. I., Brownlee, M., Monnier, V. M., Weiss, M. F. (2005) Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am. J. Physiol. Renal Physiol. 289, F420-F430. <https://doi.org/10.1152/ajprenal.00415.2004>
30. Skulachev, V. P. (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Lett. 397, 7-10. <https://doi.org/10.1016/0014-5793(96)00989-1>
31. Speer, O., Morkunaite-Haimi, S., Liobikas, J., Franck, M., Hensbo, L., Linder, M. D., Kinnunen, P. K. J., Wallimann, T., Eriksson, O. (2003) Rapid suppression of mitochondrial permeability transition by methylglyoxal. Role of reversible arginine modification. J. Biol. Chem. 278, 34757-34763. <https://doi.org/10.1074/jbc.M301990200>
32. Škrha, J., Andělová, K., Bendlová, B., Broulíková, A., Cinek, O., Čechurová, D., Haluzík, M., Jirkovská, A., Kalvodová, B., Krejčí, H., Krupičková, Z., Lacigová, S., Lebl, J., Pelikánová, T., Perušičová, J., Prázný, M., Průhová, Š., Rušavý, Z., Rybka, J., Saudek, F., Svačina, Š., Šmahelová, A., Tesař, V., Widimský J. jr. (2009) Diabetology. Galén, Prague. (in Czech)
33. van der Toorn, M., Kauffman, H. F., van der Deen, M., Slebos, D. J., Koëter, G. H., Gans, R. O. B., Bakker, S. J. L. (2007) Cyclosporin A-induced oxidative stress is not the consequence of an increase in mitochondrial membrane potential. FEBS J. 274, 3003-3012. <https://doi.org/10.1111/j.1742-4658.2007.05827.x>
34. Tretter, L., Takacs, K., Kövér, K., Adam-Vizi, V. (2007) Stimulation of H2O2 generation by calcium in brain mitochondria respiring on α-glycerophosphate. J. Neurosci. Res. 85, 3471-3479. <https://doi.org/10.1002/jnr.21405>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive