Fol. Biol. 2011, 57, 112-118

https://doi.org/10.14712/fb2011057030112

The Influence of Electroporation on in Vitro Photodynamic Therapy of Human Breast Carcinoma Cells

J. Kulbacka1, M. Nowak2, N. Skołucka1,2, J. Saczko1, Malgorzata Kotulska2

1Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
2Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wroclaw, Poland

Received November 2010
Accepted February 2011

References

1. Castano, A. P., Demidova, T. N., Hamblin, M. R. (2004) Mechanisms in photodynamic therapy: part one – photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther. 1, 279-293. <https://doi.org/10.1016/S1572-1000(05)00007-4>
2. Cemazar, M., Jarm, T., Miklavcic, D., Macek-Lebar, A., Ihan, A., Kopitar, N. A., Sersa, G. (1998) Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electromagn. Biol. Med. 17, 263-272.
3. Cemazar, M., Tamzali, Y., Sersa, G., Tozon, N., Mir, L. M., Miklavcic, D., Lowe, R., Teissie J. (2008) Electrochemotherapy in veterinary oncology. J. Vet. Intern. Med. 22, 826-831. <https://doi.org/10.1111/j.1939-1676.2008.0117.x>
4. Collins, A. R. (2002) Comet assay – principles, applications, and limitations. Methods Mol. Biol. 203, 163-177.
5. Daud, A. I., Deconti, R. C., Andrews, S., Urbas, P., Riker, A. I., Sondak, V. K., Munster, P. N., Sullivan, D. M., Ugen, K. E., Messina, J. L., Heller, R. (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J. Clin. Oncol. 26, 5896-5903. <https://doi.org/10.1200/JCO.2007.15.6794>
6. Gehl, J. (2008) Electroporation for drug and gene delivery in the clinic: doctors go electric. Methods Mol. Biol. 423, 351-359. <https://doi.org/10.1007/978-1-59745-194-9_27>
7. Johnson, P. G., Hui, S. W., Oseroff, A. R. (2002) Electrically enhanced percutaneous delivery of δ-aminolevulinic acid using electric pulses and a DC potential. Photochem. Photobiol. 75, 534-540. <https://doi.org/10.1562/0031-8655(2002)075<0534:EEPDOA>2.0.CO;2>
8. Kanduser, M., Sentjurc, M., Miklavcic, D. (2008) The temperature effect during pulse application on cell membrane fluidity and permeabilization. Bioelectrochemistry 74, 52-57. <https://doi.org/10.1016/j.bioelechem.2008.04.012>
9. Kessel, D. (2004) Photodynamic therapy: from the beginning. Photodiagnosis Photodyn. Ther. 1, 3-7. <https://doi.org/10.1016/S1572-1000(04)00003-1>
10. Koronkiewicz, S., Kalinowski, S., Bryl, K. (2002) Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes, Biochim. Biophys. Acta 1561, 222-229. <https://doi.org/10.1016/S0005-2736(02)00347-4>
11. Kotulska, M., Koronkiewicz, S., Kalinowski, S. (2004) Selfsimilar processes and flicker noise from a fluctuating nanopore in a lipid membrane. Phys. Rev. E 69, 031920. <https://doi.org/10.1103/PhysRevE.69.031920>
12. Kotulska, M. (2007) Natural fluctuations of an electropore show fractional Lévy stable motion. Biophys. J. 92, 2412-2421. <https://doi.org/10.1529/biophysj.106.091363>
13. Kotulska, M., Kubica, K., Koronkiewicz, S., Kalinowski, S. (2007) Modeling the induction of lipid membrane electropermeabilization. Bioelectrochemistry 70, 64-70. <https://doi.org/10.1016/j.bioelechem.2006.03.017>
14. Krassowska, W., Filev, P. D. (2007) Modeling electroporation in a single cell. Biophys. J. 92, 404-417. <https://doi.org/10.1529/biophysj.106.094235>
15. Labanauskiene, J., Gehl, J., Didziapetriene, J. (2007) Evaluation of cytotoxic effect of photodynamic therapy in combination with electroporation in vitro. Bioelectrochemistry 70, 78-82. <https://doi.org/10.1016/j.bioelechem.2006.03.009>
16. Lambreva, M., Glück, B., Radeva, M., Berg, H. (2004) Electroporation of cell membranes supporting penetration of photodynamic active macromolecular chromophore dextrans. Bioelectrochemistry 62, 95-98. <https://doi.org/10.1016/j.bioelechem.2003.10.007>
17. Lambreva, M., Berg, H. (2010) Synergistic electrochemotherapy on cancer cells by photodynamically active cytostatic agents. Bioelectrochemistry 79, 254-256. <https://doi.org/10.1016/j.bioelechem.2010.02.003>
18. Larkin, J. O., Collins, C. G., Aarons, S., Tangney, M., Whelan, M., O’Reily, S., Breathnach, O., Soden, D. M., O’Sullivan, G. C. (2007) Electrochemotherapy: aspects of preclinical development and early clinical experience. Ann Surg. 245, 469-479. <https://doi.org/10.1097/01.sla.0000250419.36053.33>
19. Linnert, M., Gehl, J. (2009) Bleomycin treatment of brain tumors: an evaluation. Anticancer Drugs 20, 157-164. <https://doi.org/10.1097/CAD.0b013e328325465e>
20. Mir, L. M., Gehl, J., Sersa, G., Collins, C. G., Garbay, J. R., Billard, V., Geertsen, P. F., Rudolf, Z., O’Sullivan, G. C., Marty, M. (2006) Standard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. Eur. J. Cancer S4, 14-25. <https://doi.org/10.1016/j.ejcsup.2006.08.003>
21. Mir, L. M. (2009) Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future. Mol. Biotechnol. 43, 167-176. <https://doi.org/10.1007/s12033-009-9192-6>
22. Neal, R. E. 2nd, Davalos, R. V. (2009) The feasibility of irreversible electroporation for the treatment of breast cancer and other heterogeneous systems. Ann. Biomed. Eng. 37, 2615-2625. <https://doi.org/10.1007/s10439-009-9796-9>
23. Neal, R. E. 2nd, Singh, R., Hatcher, H. C., Kock, N. D., Torti, S. V., Davalos, R. V. (2010) Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode. Breast Cancer Res. Treat. 123, 295-301. <https://doi.org/10.1007/s10549-010-0803-5>
24. Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P. H. (1982) Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J. 1, 841-845. <https://doi.org/10.1002/j.1460-2075.1982.tb01257.x>
25. Pang, L., Baciu, C., Traitcheva, N., Berg, H. (2001) Photodynamic effect on cancer cells influenced by electromagnetic fields. J. Photochem. Photobiol. B 64, 21-26. <https://doi.org/10.1016/S1011-1344(01)00185-3>
26. Plaetzer, K., Krammer, B., Berlanda, J., Berr, F., Kiesslich, T. (2009) Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med. Sci. 24, 259-268. <https://doi.org/10.1007/s10103-008-0539-1>
27. Pucihar, G., Kotnik, T., Miklavcic, D., Teissié, J. (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys. J. 95, 2837-2848. <https://doi.org/10.1529/biophysj.108.135541>
28. Saczko, J., Chwilkowska, A., Kulbacka, J., Berdowska, I., Zielinski, B., Drag-Zalesinska, M., Wysocka, T., Lugowski, M., Banas, T. (2008) Photooxidative action in cancer and normal cells induced by the use of photofrin in photodynamic therapy. Folia Biol. (Praha) 54, 24-29.
29. Saczko, J., Skrzypek, W., Chwiłkowska, A., Choromańska, A., Poła, A., Gamian, A., Kulbacka, J. (2009) Photo-oxidative action in cervix carcinoma cells induced by HPD-mediated photodynamic therapy. Exp. Oncol. 31, 195-199.
30. Saczko, J., Nowak, M., Skolucka, N., Kulbacka, J., Kotulska, M. (2010) The effects of the electro-photodynamic in vitro treatment on human lung adenocarcinoma cells. Bioelectrochemistry 79, 90-94. <https://doi.org/10.1016/j.bioelechem.2009.12.006>
31. Sersa, G. (2006) The state-of-the-art of electrochemotherapy before the ESOPE study; advantages and clinical uses. Eur. J. Cancer S4, 52-59. <https://doi.org/10.1016/j.ejcsup.2006.08.007>
32. Skołucka, N., Daczewska, M., Saczko, J., Chwiłkowska, A., Choromańska, A., Kotulska, M., Kamińska, I., Kulbacka, J. (2011) ETM study of electroporation influence on cell morphology in human malignant melanoma (Me-45) and human primary gingival fibroblast (HGFs) cells. Asian Pacific Journal of Tropical Biomedicine 2, 1-5.
33. Tamosiunas, M., Bagdonas, S., Didziapetriene, J., Rotomskis, R. (2005) Electroporation of transplantable tumour for the enhanced accumulation of photosensitizers. J. Photochem. Photobiol. B 81, 67-75. <https://doi.org/10.1016/j.jphotobiol.2005.05.009>
34. Teissie, J., Rols, M. P. (1988). Electropermeabilization and electrofusion of cells. In: Dynamic of Membrane Proteins and Cellular Energetics, eds. N. Latruffe, Y. Gaudemer, P. Vignais, A. Azzi, pp. 249-268, Springer Verlag, Heidelberg.
35. Traitcheva, N., Berg, H. (2010) Electroporation and alternating current cause membrane permeation of photodynamic cytotoxins yielding necrosis and apoptosis of cancer cells. Bioelectrochemistry 79, 257-260. <https://doi.org/10.1016/j.bioelechem.2010.02.005>
36. Wang, X., Hönes, I., Berg, H. (1998) Uptake of photodynamic sensitizer by electroporated yeast cells. Bioelectrochem. Bioenerg. 47, 175-177. <https://doi.org/10.1016/S0302-4598(98)00160-3>
37. Wendenburg, R., Brakhage, P., Dietel, W. (1995) Role of oligomers/aggregates of amphiphilic sensitizers for fluorescent visualization of tumour tissue: investigation of the interaction of haematoporphyrin derivative and Photosan with membranes. Proc. SPIE 2324, 276-283. <https://doi.org/10.1117/12.198732>
38. Whelan, M. C., Larkin, J. O., Collins, C. G., Cashman, J., Breathnach, O., Soden, D. M., O’Sullivan, G. C. (2006) Effective treatment of an extensive recurrent breast cancer which was refractory to multimodal therapy by multiple applications of electrochemotherapy. Eur. J. Cancer S4, 32-34. <https://doi.org/10.1016/j.ejcsup.2006.07.006>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive