Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2011, 57, 119-124

https://doi.org/10.14712/fb2011057030119

Isolation and Characterization of Synovial Mesenchymal Stem Cells

Denisa Harvanová1, T. Tóthová1, M. Šarišský2, J. Amrichová1, J. Rosocha1

1Associated Tissue Bank, of Faculty of Medicine of P. J. Šafárik University and University Hospital of L. Pasteur, Košice, Slovak Republic
2Department of Pharmacology of Faculty of Medicine of P. J. Šafárik University and University Hospital of L. Pasteur, Košice, Slovak Republic

Received January 2011
Accepted March 2011

References

1. Arufe, M. C., De la Fuente, A., Fuentes-Boquete, I., De Toro, F. J., Blanco, F. J. (2009) Differentiation of synovial CD105(+) human mesenchymal stem cells into chondrocytelike cells through spheroid formation. J. Cell Biochem. 108, 145-55. <https://doi.org/10.1002/jcb.22238>
2. Bruder, S. P., Ricalton, N. S., Boynton, R. E., Connolly, T. J., Jaiswal, N., Zaia, J., Barry, F. P. (1998) Mesenchymal stem cell surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenic differentiation. J. Bone Miner. Res. 13, 655-663. <https://doi.org/10.1359/jbmr.1998.13.4.655>
3. Cheifetz, S., Bellón, T., Calés, C., Vera, S., Bernabeu, C., Massagué, J., Letarte, M. (1992) Endoglin is a component of the transforming growth factor-β receptor system in human endothelial cells. J. Biol. Chem. 267, 19027-19030. <https://doi.org/10.1016/S0021-9258(18)41732-2>
4. Chen, X. D, Qian, H. Y., Neff, L., Satomura, K., Horowitz, M. C. (1999) Thy-1 antigen expression by cells in the osteoblast lineage. J. Bone Miner. Res. 14, 362-375. <https://doi.org/10.1359/jbmr.1999.14.3.362>
5. De Bari, C., Dell’Accio, F., Tylzanowski, P., Luyten, F. P. (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44, 1928-1942. <https://doi.org/10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P>
6. Djouad, F., Bony, C., Häupl, T., Uzé, G., Lahlou, N., LouisPlence, P., Apparailly, F., Canovas, F., Rème, T., Sany, J., Jorgensen, C., Noël, D. (2005) Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res. Ther. 7, 1304-1315. <https://doi.org/10.1186/ar1827>
7. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., Horwitz, E. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317. <https://doi.org/10.1080/14653240600855905>
8. Fickert, S., Fiedler, J., Brenner, R. E. (2003) Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthr. Cartil. 11, 790-800. <https://doi.org/10.1016/S1063-4584(03)00167-5>
9. Friedenstein, A. J., Gorskaja, J. F, Kulagina, N. N. (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4, 267-274.
10. Goussetis, E., Spiropoulos, A., Theodosaki, M., Paterakis, G., Peristeri, I., Kitra, V., Petrakou, E., Soldatou, A., Graphakos, S. (2005) Culture of bone marrow CD105+ cells allows rapid selection of pure BM-stromal cells for chimerism studies in patients undergoing allogeneic bone marrow transplantation. Bone Marrow Transplant. 36, 557-559. <https://doi.org/10.1038/sj.bmt.1705083>
11. Jackson, W. M., Nesti, L. J., Tuan, R. S. (2010) Potential therapeutic applications of muscle derived mesenchymal stem and progenitor cells. Expert Opin. Biol. Ther. 10, 505-517. <https://doi.org/10.1517/14712591003610606>
12. Jo, C. H., Ahn, H. J., Kim, H. J., Seong, S. C., Lee, M. C. (2007) Surface characterization and chondrogenic differentiation of mesenchymal stromal cells derived from synovium. Cytotherapy 9, 316-327. <https://doi.org/10.1080/14653240701291620>
13. Jones, E. A., English, A., Henshaw, K., Kinsey, S. E., Markham, A. F. (2004) Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 50, 817-827. <https://doi.org/10.1002/art.20203>
14. Mochizuki, T., Muneta, T., Sakaguchi, Y., Nimura, A., Yokoyama, A., Koga, H., Sekiya, I. (2006) Higher chondrogenic potential of fibrous synoviumand adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum. 3, 843-853. <https://doi.org/10.1002/art.21651>
15. Mor, A., Abramson, S. B., Pillinger, M. H. (2005) The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clin. Immunol. 115, 118-128. <https://doi.org/10.1016/j.clim.2004.12.009>
16. Nagase, T., Muneta, T., Ju, Y. J., Hara, K., Morito, T., Koga, H., Sekiya, I. (2008) Analysis of the chondrogenic potential of human synovial stem cells according to harvest site and culture parameters in knees with medial compartment osteoarthritis. Arthritis Rheum. 58, 1389-1398. <https://doi.org/10.1002/art.23418>
17. Nečas, A., Plánka, L., Srnec, R., Crha, M., Hlučilová, J., Klíma, J., Starý, D., Křen, L., Amler, E., Vojtová, L., Jančář, J., Gál, P. (2010) Quality of newly formed cartilaginous tissue in defects of articular surface after transplantation of mesenchymal stem cells in a composite scaffold based on collagen I with chitosan microand nanofibres. Physiol. Res. 59, 605-614. <https://doi.org/10.33549/physiolres.931725>
18. Pei, M., He, F., Kish, V. L., Vunjak-Novakovic, G. (2008a) Engineering of functional cartilage tissue using stem cells from synovial lining: a preliminary study. Clin. Orthop. Relat. Res. 466, 1880-1889. <https://doi.org/10.1007/s11999-008-0316-2>
19. Pei, M., He, F., Vunjak-Novakovic, G. (2008b) Synovium-derived stem cell-based chondrogenesis. Differentiation 76, 1044-1056. <https://doi.org/10.1111/j.1432-0436.2008.00299.x>
20. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147. <https://doi.org/10.1126/science.284.5411.143>
21. Sakaguchi, Y., Sekiya, I., Yagishita, K., Muneta, T. (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 52, 2521-2529. <https://doi.org/10.1002/art.21212>
22. Vandenabeele, F., De Bari, C., Moreels, M., Lambrichts, I., Dell’Accio, F., Lippens, P. L., Luyten, F. P. (2003) Morphological and immunocytochemical characterization of cultured fibroblast-like cells derived from adult human synovial membrane. Arch. Histol. Cytol. 66, 145-153. <https://doi.org/10.1679/aohc.66.145>
23. Zhang, S., Muneta, T., Morito, T., Mochizuki, T., Sekiya, I. (2008) Autologous synovial fluid enhances migration of mesenchymal stem cells from synovium of osteoarthritis patients in tissue culture system. J. Orthop. Res. 26, 1413-1418. <https://doi.org/10.1002/jor.20659>
24. Zimmermann, T., Kunisch, E., Pfeiffer, R., Hirth, A., Stahl, H. D., Sack, U., Laube, A., Liesaus, E., Roth, A., PalomboKinne, E., Emmrich, F., Kinne, R. W. (2001) Isolation and characterization of rheumatoid arthritis synovial fibroblasts from primary culture – primary culture cells markedly differ from fourth-passage cells. Arthritis Res. 3, 72-76. <https://doi.org/10.1186/ar142>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive