Fol. Biol. 2011, 57, 139-144

https://doi.org/10.14712/fb2011057040139

RhoA Distribution in Renal Caveolar Fractions in Experimental Type 1 Diabetes

Hana Demová, M. Černá

Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic Institute of General Biology and Genetics, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic

Received March 2011
Accepted April 2011

References

1. Anderson, R. G. W. (1998) The caveolae membrane system. Annu. Rev. Biochem. 67, 199-225. <https://doi.org/10.1146/annurev.biochem.67.1.199>
2. Aoki, H., Izumo, S., Sadoshima, J. (1998) Angiotensin II activates RhoA in cardiac myocytes, a critical role of RhoA in angiotensin II-induced premyofibril formation. Circ. Res. 82, 666-676. <https://doi.org/10.1161/01.RES.82.6.666>
3. Bokoch, G. M., Bohl, B. P., Chuang T. H. (1994) Guanine nucleotide exchange regulates membrane translocation of Rac/Rho GTP-binding proteins. J. Biol. Chem. 269, 31674-31679. <https://doi.org/10.1016/S0021-9258(18)31748-4>
4. Calo, L. A., Pessina, A. C. (2007) RhoA/Rho-kinase pathway, much more than just a modulation of vascular tone. Evidence from studies in humans. J. Hypertens. 25, 259-264. <https://doi.org/10.1097/HJH.0b013e328010d4d2>
5. Cooper, M. E. (1998) Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 352, 213-219. <https://doi.org/10.1016/S0140-6736(98)01346-4>
6. Demová, H., Komers, R. (2009) Determination of caveolin-1 in renal caveolar and non-caveolar fractions in experimental type 1 diabetes. Physiol. Res. 58, 563-568. <https://doi.org/10.33549/physiolres.931369>
7. Dubroca, C., Loyer, X., Retailleau, K., Loirand, G., Pacaud, P., Feron, O., Balligand, J.-L., Lévy, B., Heymes, Ch., Henrion, D. (2007) RhoA activation and interaction with Caveolin-1 are critical for pressure-induced myogenic tone in rat mesenteric resistance arteries. Cardiovasc. Res. 73, 190–197. <https://doi.org/10.1016/j.cardiores.2006.10.020>
8. Engelman, J. A., Chu, C., Lin, A., Jo, H., Ikezu, T., Okamoto, T., Kohtz, D. S., Lisanti, M. P. (1998) Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett. 428, 205-211. <https://doi.org/10.1016/S0014-5793(98)00470-0>
9. Etienne-Manneville, S., Hall, A. (2002) Rho GTPases in cell biology. Nature 420, 629-635. <https://doi.org/10.1038/nature01148>
10. Frank, P. G., Woodman, S. E., Park, D. S., Lisanti, M. P. (2003) Caveolin, caveolae, and endothelial cell function. Arterioscler. Thromb. Vasc. Biol. 23, 1161-1168. <https://doi.org/10.1161/01.ATV.0000070546.16946.3A>
11. Gingras, D., Gauthier, F., Lamy, S., Desrosiers, R. R., Béliveau, R. (1998) Localization of RhoA GTPase to endothelial caveolae-enriched membrane domains. Biochem. Biophys. Res. Commun. 247, 888-893. <https://doi.org/10.1006/bbrc.1998.8885>
12. Ishikawa, Y., Otsua, K., Oshikawa, J. (2005) Caveolin, different roles for insulin signal? Cell. Signal. 17, 1175-1182. <https://doi.org/10.1016/j.cellsig.2005.03.025>
13. Kanda, T., Wakino, S., Hayashi, K., Homma, K., Ozawa, Y., Saruta, T. (2003) Effect of fasudil on Rho-kinase and nephropathy in subtotally nephrectomized spontaneously hypertensive rats. Kidney Int. 64, 2009-2019. <https://doi.org/10.1046/j.1523-1755.2003.00300.x>
14. Kataoka, C., Egashira, K., Inoue, S., Takemoto, M., Ni W., Koyanagi, M., Kitamoto, S., Usui, M., Kaibuchi, K., Shimokawa, H., Takeshita, A. (2002) Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 3, 245-250. <https://doi.org/10.1161/hy0202.103271>
15. Kawamura, S., Miyamoto, S., Brown, J. H. (2003) Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae, Cytoskeletal regulation of ERK translocation. J. Biol. Chem. 278, 31111–31117. <https://doi.org/10.1074/jbc.M300725200>
16. Komers, R., Schutzer, W. E., Reed, J. F., Lindsley, J. N., Oyama, T. T., Buck, D. C., Mader, S. L., Anderson, S. (2006) Altered endothelial nitric oxide synthase targeting and conformation and caveolin-1 expression in the diabetic kidney. Diabetes 55, 1651-1659. <https://doi.org/10.2337/db05-1595>
17. Lauf, U., Liao, J. K. (2000) Targeting Rho in cardiovascular disease. Circ. Res. 8, 526-528. <https://doi.org/10.1161/01.RES.87.7.526>
18. Lecian, D., Demova, H., Lodererova, A., Zdychova, J., Kluckova, H., Teplan, V., Voska, L., Komers, R. (2006) Renal effects of HMG-CoA reductase inhibition in a rat model of chronic inhibition of nitric oxide synthesis. Kidney Blood Press. Res. 29, 135-143. <https://doi.org/10.1159/000094988>
19. Lisanti, M. P., Scherer, P. E., Vidugiriene, J., Tang, Z., Hermanowski-Vosatka, A., Tu, Yh., Cook, R. F., Sargiacomo, M. (1994) Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source, implications for human disease. J. Cell. Biol. 126, 111-126. <https://doi.org/10.1083/jcb.126.1.111>
20. Lowry, O. H., Rosenbrough, W. H., Farr, A. L., Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Bioch. Chem. 193, 265-275. <https://doi.org/10.1016/S0021-9258(19)52451-6>
21. Lufs, U., Endres, M., Stagliano, N. (2000) Neuroprotection mediated by changes in the endothelial action cytoskeleton. J. Clin. Invest. 106, 15-24. <https://doi.org/10.1172/JCI9639>
22. Michel, J. B., Feron, O., Sase, K., Prabhakar, P., Michel, T. (1997) Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. J. Biol. Chem. 272, 25907-25912. <https://doi.org/10.1074/jbc.272.41.25907>
23. Osawa, H., Nakamura, N., Shirato, K., Nakamura, M., Shimada, M., Kumasaka, R., Murakami, R., Fujita, T., Yamabe, H., Okumara, K. (2006) Losartan, an angiotensinII receptor antagonist, retards the progression of advanced renal insufficiency. J. Exp. Med. 209, 7-13.
24. Pascariu, M., Bendayan, M., Ghitescu, L. (2004) Correlated endothelial caveolin overexpression and increased transcytosis in experimental diabetes. J. Histochem. Cytochem. 52, 65-76. <https://doi.org/10.1177/002215540405200107>
25. Peng, F., Wu, D., Ingram, A. J., Zhang, B., Gao, B., Krepinsky, J. C. (2007) RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-1 interaction. J. Am. Soc. Nephrol. 18, 189-198. <https://doi.org/10.1681/ASN.2006050498>
26. Peng, F., Wu, D., Gao, B., Ingram, A. J., Zhang, B., Chorneyko, K., McKenzie, R., Krepinsky, J. C. (2008) RhoA/Rho-kinase contribute to the pathogenesis of diabetic renal disease. Diabetes 57, 1683-1692. <https://doi.org/10.2337/db07-1149>
27. Razani, B., Lisanti, M. P. (2001) Caveolins and caveolae: molecular and functional relationships. Exp. Cell. Res. 271, 36-44. <https://doi.org/10.1006/excr.2001.5372>
28. Razani, B., Woodman, S. E., Lisanti, M. P. (2002) Caveolae: From cell biology to animal physiology. Pharmacol. Rev. 54, 431-467. <https://doi.org/10.1124/pr.54.3.431>
29. Seko, T., Ito, M, Kureishi, Y., Okamoto, R., Moriki, N., Ohnishi, K., Isaka, N., Hartshorne, D. J., Nakano, T. (2003) Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ. Res. 92, 411-418. <https://doi.org/10.1161/01.RES.0000059987.90200.44>
30. Shaul, P. W., Anderson, R. G. (1998) Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol. 275, L843-L851.
31. Song, K. S., Li, S., Okamoto, T., Quilliam, L. A., Sargiacomo, M., Lisanti, M. P. (1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271, 9690-2697. <https://doi.org/10.1074/jbc.271.16.9690>
32. Takeda, K., Ichiki, T., Tokunou, T., Iino, N., Fujii, S., Kitabatake, A., Shimokawa, H., Takeshita, A. (2001) Critical role of Rho-kinase and MEK/ERK pathways for angiotensin II-induced plasminogen activator inhibitor type-1 gene expression. Arterioscler. Thromb. Vasc. Biol. 21, 868-873. <https://doi.org/10.1161/01.ATV.21.5.868>
33. Teixeira, A., Chaverot, N., Schroder, C., Strosberg, A. D., Couraud, P. O., Cazaubon, S. (1999) Requirement of caveolae microdomains in extracellular signal-regulated kinase and focal adhesion kinase activation induced by endothelin-1 in primary astrocytes. J. Neurochem. 72, 120-128. <https://doi.org/10.1046/j.1471-4159.1999.0720120.x>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive