Fol. Biol. 2011, 57, 139-144
https://doi.org/10.14712/fb2011057040139
RhoA Distribution in Renal Caveolar Fractions in Experimental Type 1 Diabetes
References
1. 1998) The caveolae membrane system. Annu. Rev. Biochem. 67, 199-225.
< , R. G. W. (https://doi.org/10.1146/annurev.biochem.67.1.199>
2. 1998) Angiotensin II activates RhoA in cardiac myocytes, a critical role of RhoA in angiotensin II-induced premyofibril formation. Circ. Res. 82, 666-676.
< , H., Izumo, S., Sadoshima, J. (https://doi.org/10.1161/01.RES.82.6.666>
3. 1994) Guanine nucleotide exchange regulates membrane translocation of Rac/Rho GTP-binding proteins. J. Biol. Chem. 269, 31674-31679.
< , G. M., Bohl, B. P., Chuang T. H. (https://doi.org/10.1016/S0021-9258(18)31748-4>
4. 2007) RhoA/Rho-kinase pathway, much more than just a modulation of vascular tone. Evidence from studies in humans. J. Hypertens. 25, 259-264.
< , L. A., Pessina, A. C. (https://doi.org/10.1097/HJH.0b013e328010d4d2>
5. 1998) Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 352, 213-219.
< , M. E. (https://doi.org/10.1016/S0140-6736(98)01346-4>
6. 2009) Determination of caveolin-1 in renal caveolar and non-caveolar fractions in experimental type 1 diabetes. Physiol. Res. 58, 563-568.
< , H., Komers, R. (https://doi.org/10.33549/physiolres.931369>
7. 2007) RhoA activation and interaction with Caveolin-1 are critical for pressure-induced myogenic tone in rat mesenteric resistance arteries. Cardiovasc. Res. 73, 190–197.
< , C., Loyer, X., Retailleau, K., Loirand, G., Pacaud, P., Feron, O., Balligand, J.-L., Lévy, B., Heymes, Ch., Henrion, D. (https://doi.org/10.1016/j.cardiores.2006.10.020>
8. 1998) Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett. 428, 205-211.
< , J. A., Chu, C., Lin, A., Jo, H., Ikezu, T., Okamoto, T., Kohtz, D. S., Lisanti, M. P. (https://doi.org/10.1016/S0014-5793(98)00470-0>
9. 2002) Rho GTPases in cell biology. Nature 420, 629-635.
< , S., Hall, A. (https://doi.org/10.1038/nature01148>
10. 2003) Caveolin, caveolae, and endothelial cell function. Arterioscler. Thromb. Vasc. Biol. 23, 1161-1168.
< , P. G., Woodman, S. E., Park, D. S., Lisanti, M. P. (https://doi.org/10.1161/01.ATV.0000070546.16946.3A>
11. 1998) Localization of RhoA GTPase to endothelial caveolae-enriched membrane domains. Biochem. Biophys. Res. Commun. 247, 888-893.
< , D., Gauthier, F., Lamy, S., Desrosiers, R. R., Béliveau, R. (https://doi.org/10.1006/bbrc.1998.8885>
12. 2005) Caveolin, different roles for insulin signal? Cell. Signal. 17, 1175-1182.
< , Y., Otsua, K., Oshikawa, J. (https://doi.org/10.1016/j.cellsig.2005.03.025>
13. 2003) Effect of fasudil on Rho-kinase and nephropathy in subtotally nephrectomized spontaneously hypertensive rats. Kidney Int. 64, 2009-2019.
< , T., Wakino, S., Hayashi, K., Homma, K., Ozawa, Y., Saruta, T. (https://doi.org/10.1046/j.1523-1755.2003.00300.x>
14. 2002) Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 3, 245-250.
< , C., Egashira, K., Inoue, S., Takemoto, M., Ni W., Koyanagi, M., Kitamoto, S., Usui, M., Kaibuchi, K., Shimokawa, H., Takeshita, A. (https://doi.org/10.1161/hy0202.103271>
15. 2003) Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae, Cytoskeletal regulation of ERK translocation. J. Biol. Chem. 278, 31111–31117.
< , S., Miyamoto, S., Brown, J. H. (https://doi.org/10.1074/jbc.M300725200>
16. 2006) Altered endothelial nitric oxide synthase targeting and conformation and caveolin-1 expression in the diabetic kidney. Diabetes 55, 1651-1659.
< , R., Schutzer, W. E., Reed, J. F., Lindsley, J. N., Oyama, T. T., Buck, D. C., Mader, S. L., Anderson, S. (https://doi.org/10.2337/db05-1595>
17. 2000) Targeting Rho in cardiovascular disease. Circ. Res. 8, 526-528.
< , U., Liao, J. K. (https://doi.org/10.1161/01.RES.87.7.526>
18. 2006) Renal effects of HMG-CoA reductase inhibition in a rat model of chronic inhibition of nitric oxide synthesis. Kidney Blood Press. Res. 29, 135-143.
< , D., Demova, H., Lodererova, A., Zdychova, J., Kluckova, H., Teplan, V., Voska, L., Komers, R. (https://doi.org/10.1159/000094988>
19. 1994) Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source, implications for human disease. J. Cell. Biol. 126, 111-126.
< , M. P., Scherer, P. E., Vidugiriene, J., Tang, Z., Hermanowski-Vosatka, A., Tu, Yh., Cook, R. F., Sargiacomo, M. (https://doi.org/10.1083/jcb.126.1.111>
20. 1951) Protein measurement with the Folin phenol reagent. J. Bioch. Chem. 193, 265-275.
< , O. H., Rosenbrough, W. H., Farr, A. L., Randall, R. J. (https://doi.org/10.1016/S0021-9258(19)52451-6>
21. 2000) Neuroprotection mediated by changes in the endothelial action cytoskeleton. J. Clin. Invest. 106, 15-24.
< , U., Endres, M., Stagliano, N. (https://doi.org/10.1172/JCI9639>
22. 1997) Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. J. Biol. Chem. 272, 25907-25912.
< , J. B., Feron, O., Sase, K., Prabhakar, P., Michel, T. (https://doi.org/10.1074/jbc.272.41.25907>
23. 2006) Losartan, an angiotensinII receptor antagonist, retards the progression of advanced renal insufficiency. J. Exp. Med. 209, 7-13.
, H., Nakamura, N., Shirato, K., Nakamura, M., Shimada, M., Kumasaka, R., Murakami, R., Fujita, T., Yamabe, H., Okumara, K. (
24. 2004) Correlated endothelial caveolin overexpression and increased transcytosis in experimental diabetes. J. Histochem. Cytochem. 52, 65-76.
< , M., Bendayan, M., Ghitescu, L. (https://doi.org/10.1177/002215540405200107>
25. 2007) RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-1 interaction. J. Am. Soc. Nephrol. 18, 189-198.
< , F., Wu, D., Ingram, A. J., Zhang, B., Gao, B., Krepinsky, J. C. (https://doi.org/10.1681/ASN.2006050498>
26. 2008) RhoA/Rho-kinase contribute to the pathogenesis of diabetic renal disease. Diabetes 57, 1683-1692.
< , F., Wu, D., Gao, B., Ingram, A. J., Zhang, B., Chorneyko, K., McKenzie, R., Krepinsky, J. C. (https://doi.org/10.2337/db07-1149>
27. 2001) Caveolins and caveolae: molecular and functional relationships. Exp. Cell. Res. 271, 36-44.
< , B., Lisanti, M. P. (https://doi.org/10.1006/excr.2001.5372>
28. 2002) Caveolae: From cell biology to animal physiology. Pharmacol. Rev. 54, 431-467.
< , B., Woodman, S. E., Lisanti, M. P. (https://doi.org/10.1124/pr.54.3.431>
29. 2003) Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ. Res. 92, 411-418.
< , T., Ito, M, Kureishi, Y., Okamoto, R., Moriki, N., Ohnishi, K., Isaka, N., Hartshorne, D. J., Nakano, T. (https://doi.org/10.1161/01.RES.0000059987.90200.44>
30. 1998) Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol. 275, L843-L851.
, P. W., Anderson, R. G. (
31. 1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271, 9690-2697.
< , K. S., Li, S., Okamoto, T., Quilliam, L. A., Sargiacomo, M., Lisanti, M. P. (https://doi.org/10.1074/jbc.271.16.9690>
32. 2001) Critical role of Rho-kinase and MEK/ERK pathways for angiotensin II-induced plasminogen activator inhibitor type-1 gene expression. Arterioscler. Thromb. Vasc. Biol. 21, 868-873.
< , K., Ichiki, T., Tokunou, T., Iino, N., Fujii, S., Kitabatake, A., Shimokawa, H., Takeshita, A. (https://doi.org/10.1161/01.ATV.21.5.868>
33. 1999) Requirement of caveolae microdomains in extracellular signal-regulated kinase and focal adhesion kinase activation induced by endothelin-1 in primary astrocytes. J. Neurochem. 72, 120-128.
< , A., Chaverot, N., Schroder, C., Strosberg, A. D., Couraud, P. O., Cazaubon, S. (https://doi.org/10.1046/j.1471-4159.1999.0720120.x>