Fol. Biol. 2011, 57, 162-169

https://doi.org/10.14712/fb2011057040162

Comparison of P19-Derived Neuroprogenitor and Naive Cell Survival after Intracerebellar Application into B6CBA Mice

Z. Houdek1,2, J. Cendelín1, V. Kulda3, V. Babuška3, F. Vožeh1, J. Hatina4, Milena Králíčková2,5, N. H. Zech6, I. Veselá7, J. Pacherník7, P. Uher2

1Department of Pathophysiology, Charles University in Prague – Faculty of Medicine in Pilsen, Pilsen, Czech Republic
2IVF Centers Prof. Zech – Pilsen s. r. o., Pilsen, Czech Republic
3Department of Medical Chemistry and Biochemistry, Charles University in Prague – Faculty of Medicine in Pilsen, Pilsen, Czech Republic
4Department of Biology, Charles University in Prague – Faculty of Medicine in Pilsen, Pilsen, Czech Republic
5Department of Histology and Embryology Charles University in Prague – Faculty of Medicine in Pilsen, Pilsen, Czech Republic
6IVF Centers Prof. Zech – Bregenz, Bregenz, and Department for Obstetrics and Gynecology, Unit of Gynecological Endocrinology and Reproductive Medicine, University of Graz, Austria
7Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic

Received March 2011
Accepted March 2011

References

1. Ali, H., Jurga, M., Kurgonaite, K., Forraz, N., McGuckin, C. (2009) Defined serum-free culturing conditions for neural tissue engineering of human cord blood stem cells. Acta Neurobiol. Exp. (Wars) 69, 12-23. <https://doi.org/10.55782/ane-2009-1725>
2. Ali, H., Bahbahani, H. (2010) Umbilical cord blood stem cells – potential therapeutic tool for neural injuries and disorders. Acta Neurobiol. Exp. (Wars) 70, 316-324. <https://doi.org/10.55782/ane-2010-1804>
3. Amariglio, N., Hirshberg, A., Scheithauer, B. W., Cohen, Y., Loewenthal, R., Trakhtenbrot, L., Paz, N., KorenMichowitz, M., Waldman, D., Leider-Trejo, L., Toren, A., Constantini, S., Rechavi, G. (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 6. <https://doi.org/10.1371/journal.pmed.1000029>
4. Babuska, V., Kulda, V., Houdek, Z., Pesta, M., Cendelin, J., Zech, H. N., Pachernik, J., Vozeh, F., Uher, P., Kralickova, M. (2010) Characterization of P19 cells during retinoic acid induced differentiation. Prague Med. Rep. 111, 288-298.
5. Bachoud-Lévi, A. C., Rémy, P., Nguyen, J. P., Brugières, P., Lefaucheur, J. P., Bourdet, C., Baudic, S., Gaura, V., Maison, P., Haddad, B., Boissé, M. F., Grandmougin, T., Jény, R., Bartolomeo, P., Dalla Barba, G., Degos, J. D., Lisovoski, F., Ergis, A. M., Pailhous, E., Cesaro, P., Hantraye, P., Peschanski, M. (2000) Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 356, 1975-1979. <https://doi.org/10.1016/S0140-6736(00)03310-9>
6. Baker, K. A., Hong, M., Sadi, D., Mendez, I. (2000) Intrastriatal and intranigral grafting of hNT neurons in the 6-OHDA rat model of Parkinson’s disease. Exp. Neurol. 162, 350-360. <https://doi.org/10.1006/exnr.1999.7337>
7. Björklund, A., Lindvall, O. (2000) Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3, 537-544. <https://doi.org/10.1038/75705>
8. Bliss, T. M., Kelly, S., Shah, A. K., Foo, W. C., Kohli, P., Stokes, C., Sun, G. H., Ma, M., Masel, J., Kleppner, S. R., Schallert, T., Palmer, T., Steinberg, G. K. (2006) Transplantation of hNT neurons into the ischemic cortex: cell survival and effect on sensorimotor behavior. J. Neurosci. Res. 83, 1004-1014. <https://doi.org/10.1002/jnr.20800>
9. Buzanska, L., Ruiz, A., Zychowicz, M., Rauscher, H., Ceriotti, L., Rossi, F., Colpo, P., Domańska-Janik, K., Coecke, S. (2009) Patterned growth and differentiation of human cord blood-derived neural stem cells on bio-functionalized surfaces. Acta Neurobiol. Exp. (Wars) 69, 24-36. <https://doi.org/10.55782/ane-2009-1726>
10. Cendelin, J., Korelusova, I., Vozeh, F. (2009a) The effect of cerebellar transplantation and enforced physical activity on motor skills and spatial learning in adult Lurcher mutant mice. Cerebellum 8, 35-45. <https://doi.org/10.1007/s12311-008-0061-9>
11. Cendelin, J., Korelusova, I., Vozeh, F. (2009b) A preliminary study of solid embryonic cerebellar graft survival in adult B6CBA Lurcher mutant and wild type mice. Anat. Rec. 292, 1986-1992. <https://doi.org/10.1002/ar.20967>
12. Esner, M., Pachernik, J., Hampl, A., Dvorak, P. (2002) Targeted disruption of fibroblast growth factor receptor-1 blocks maturation of visceral endoderm and cavitation in mouse embryoid bodies. Int. J. Dev. Biol. 46, 817-825.
13. Garbuzova-Davis, S., Willing, A. E., Milliken, M., Saporta, S., Zigova, T., Cahill, D. W., Sanberg, P. R. (2002) Positive effect of transplantation of hNT neurons (NTera 2/D1 cellline) in a model of familial amyotrophic lateral sclerosis. Exp. Neurol. 174, 169-180. <https://doi.org/10.1006/exnr.2002.7860>
14. Gulino, R., Litrico, L., Leanza, G. (2010) Long-term survival and development of fetal ventral spinal grafts into the motoneuron-depleted rat spinal cord: Role of donor age. Brain Res. 1323, 41-47. <https://doi.org/10.1016/j.brainres.2010.02.003>
15. Hara, K., Yasuhara, T., Maki, M., Matsukawa, N., Mazura, T., Yu, S. J., Ali, M., Yu, G., Xu, L., Kim, S. U., Hess, D. C., Borlongan, C., V. (2008) Neural progenitor NT2N cell lines from teratocarcinoma for transplantation therapy in stroke. Prog. Neurobiol. 85, 318-334. <https://doi.org/10.1016/j.pneurobio.2008.04.005>
16. Hicks, A., Jolkkonen, J. (2009) Challenges and possibilities of intravascular cell therapy in stroke. Acta Neurobiol. Exp. (Wars) 69, 1-11. <https://doi.org/10.55782/ane-2009-1724>
17. Hildebrand, M. S., Dahl, H. H., Hardman, J., Coleman, B., Shepherd, R. K., de Silva, M. G. (2005) Survival of partially differentiated mouse embryonic stem cells in the scala media of the guinea pig cochlea. J. Assoc. Res. Otolaryngol. 6, 341-354. <https://doi.org/10.1007/s10162-005-0012-9>
18. Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Schut, D., Fehlings, M. G. (2010) Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J. Neurosci. 30, 1657-1676. <https://doi.org/10.1523/JNEUROSCI.3111-09.2010>
19. Kawamura, K., Nanami, T., Kikuchi, Y., Kitakami, A. (1988) Grafted granule and Purkinje cells can migrate into the mature cerebellum of normal adult rats. Exp. Brain Res. 70, 477-484. <https://doi.org/10.1007/BF00247596>
20. Kim, S. U., de Vellis, J. (2009) Stem cell-based cell therapy in neurological diseases: A review. J. Neurosci. Res. 87, 2183-2200. <https://doi.org/10.1002/jnr.22054>
21. Kondziolka, D., Steinberg, G. K., Cullen, S. B., McGrogan, M. (2004) Evaluation of surgical techniques for neuronal cell transplantation used in patients with stroke. Cell Transplant. 13, 749-754. <https://doi.org/10.3727/000000004783983350>
22. Kwiatkowska-Patzer, B., Michałkiewicz, J., Kubiszewska, I., Zielińska, J., Kasarello, K., Kurzepa, K., Lipkowski, A. W. (2009) Spinal cord hydrolysate ameliorate immunological reaction in experimental allergic encephalomyelitis. Acta Neurobiol. Exp. (Wars) 69, 73-78. <https://doi.org/10.55782/ane-2009-1731>
23. Li, J., Imitola, J., Snyder, E. Y., Sidman, R. L. (2006) Neural stem cells rescue nervous Purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J. Neurosci. 26, 7839-7848. <https://doi.org/10.1523/JNEUROSCI.1624-06.2006>
24. Lindvall, O., Bryndán, P., Widner, H., Rehncrona, S., Gustavi, B., Frackowiak, R., Leenders K. L., Sawle, G., Rothwell, J. C., Marsden, C. D., Björklund, A. (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247, 574-577. <https://doi.org/10.1126/science.2105529>
25. Manto, M. U. (2005) The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4, 2-6. <https://doi.org/10.1080/14734220510007914>
26. McBurney, M. W., Rogers, B. J. (1982) Isolation of male embryonal carcinoma cells and their chromosome replication patterns. Dev. Biol. 89, 503-508. <https://doi.org/10.1016/0012-1606(82)90338-4>
27. Molteni, R., Wu, A., Vaynman, S., Ying, Z., Barnard, R. J., Gomez-Pinilla, F. (2004) Exercise reverses the effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience 123, 429-440. <https://doi.org/10.1016/j.neuroscience.2003.09.020>
28. Morassutti, D. J., Staines, W. A., Magnuson, D. S., Marshall, K. C., McBurney, M. W. (1994) Murine embryonal carcinoma-derived neurons survive and mature following transplantation into adult rat striatum. Neuroscience 58, 753-763. <https://doi.org/10.1016/0306-4522(94)90452-9>
29. Nakao, N., Yokote, H., Nakai, K., Itakura, T. (2000) Promotion of survival and regeneration of nigral dopamine neurons in a rat model of Parkinson’s disease after implantation of embryonal carcinoma-derived neurons genetically engineered to produce glial cell line-derived neurotrophic factor. Neurosurgery 92, 659-670. <https://doi.org/10.3171/jns.2000.92.4.0659>
30. Pachernik, J., Bryja, V., Esner, M., Kubala, L., Dvorak, P., Hampl, A. (2005a) Neural differentiation of pluripotent mouse embryonal carcinoma cells by retinoic acid: inhibitory effect of serum. Physiol. Res. 54, 115-122. <https://doi.org/10.33549/physiolres.930526>
31. Pachernik, J., Bryja, V., Esner, M., Hampl, A., Dvorak, P. (2005b) Retinoic acid-induced neural differentiation of P19 embryonal carcinoma cells is potentiated by leukemia inhibitory factor. Physiol. Res. 54, 257-262. <https://doi.org/10.33549/physiolres.930705>
32. Pachernik, J., Dvorak, P., Hampl, A., Horvath, V., Kozubik, A., Kubala, L. (2007) Neural differentiation potentiated by the leukaemia inhibitory factor through STAT3 signalling in mouse embryonal carcinoma cells. Folia Biol. (Praha) 53, 157-163.
33. Perrelet, D., Ferri, A., MacKenzie, A. E., Smith, G. M., Korneluk, R. G., Liston, P., Sagot, Y., Tetrádo, J., Monnier, D., Kato, A. C. (2000) IAP family proteins delay motoneuron cell death in vivo. Eur. J. Neurosci. 12, 2059-2067. <https://doi.org/10.1046/j.1460-9568.2000.00098.x>
34. Rolando, C., Gribaudo, S., Yoshikawa, K., Leto, K., De Marchis, S., Rossi, F. (2010) Extracerebellar progenitors grafted to the neurogenic milieu of the postnatal rat cerebellum adapt to the host environment but fail to acquire cerebellar identities. Eur. J. Neurosci. 31, 1340-1351. <https://doi.org/10.1111/j.1460-9568.2010.07167.x>
35. Rosenfeld, J. V., Richards, L. J., Bartlett, P. F. (1993) Mutant mouse cerebellum does not provide specific signals for the selective migration and development of transplanted Purkinje cells. Neurosci. Lett. 155, 19-23. <https://doi.org/10.1016/0304-3940(93)90664-7>
36. Rossi, F., Cattaneo, E. (2002) Neural stem cell therapy for neurological diseases: dreams and reality. Nat. Rev. Neurosci. 3, 401-409. <https://doi.org/10.1038/nrn809>
37. Sykova, E., Homola, A., Mazanec, R., Lachmann, H., Konradova, S. L., Kobylka, P., Padr, R., Neuwirth, J., Komrska, V., Vavra, V., Stulik, J., Bojar, M. (2006) Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 15, 675-687. <https://doi.org/10.3727/000000006783464381>
38. Vaynman, S., Ying, Z., Gomez-Pinilla, F. (2003) Interplay between BDNF and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience 122, 647-657. <https://doi.org/10.1016/j.neuroscience.2003.08.001>
39. Vaynman, S., Ying, Z., Gomez-Pinilla, F. (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580-2590. <https://doi.org/10.1111/j.1460-9568.2004.03720.x>
40. Vaynman, S., Ying, Z., Wu, A., Gomez-Pinilla, F. (2006) Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience 139, 1221-1234. <https://doi.org/10.1016/j.neuroscience.2006.01.062>
41. Vosper, J. M., Fiore-Heriche, C. S., Horan, I., Wilson, K., Wise, H., Philpott, A. (2007) Regulation of neurogenin stability by ubiquitin-mediated proteolysis. Biochem. J. 407, 277-284. <https://doi.org/10.1042/BJ20070064>
42. Watanabe, R., Takase-Yoden, S., Ikeda, T., Atsumi, T. (1996) Gene transfer through implantation of embryonal carcinoma cells in the brain. Cell Transplant. 5 (Suppl. 1), S9-12. <https://doi.org/10.1016/0963-6897(96)00030-9>
43. Zawadzka, M., Lukasiuk, K., Machaj, E. K., Pojda, Z., Kamińska, B. (2009) Lack of migration and neurological benefits after infusion of umbilical cord blood cells in ischemic brain injury. Acta Neurobiol. Exp. (Wars) 69, 46-51. <https://doi.org/10.55782/ane-2009-1728>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive