Fol. Biol. 2011, 57, 182-190

https://doi.org/10.14712/fb2011057050182

Genetic Variants in Haem Oxygenase-1 and Endothelial Nitric Oxide Synthase Influence the Extent and Evolution of Coronary Artery Atherosclerosis

Aleš Král1, T. Kovárník1, L. Králík2, H. Skalická1, J. Horák1, G. S. Mintz3, J. Uhrová4, M. Sonka5, A. Wahle5, R. Downe5, M. Aschermann1, P. Martásek2, A. Linhart1

1Second Department of Medicine – Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
2Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
3Cardiovascular Research Foundation, New York, NY, USA
4Institute of Clinical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
5Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, USA

Received June 2011
Accepted June 2011

References

1. Abraham, N. G., Kappas, A. (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacol. Rev. 60, 79-27. <https://doi.org/10.1124/pr.107.07104>
2. Chen, J. C., Huang, K. C., Lin, W. W. (2006) HMG-CoA reductase inhibitors upregulate heme oxygenase-1 expression in murine RAW264.7 macrophages via ERK, p38 MAPK and protein kinase G pathways. Cell. Signal. 18, 32-39. <https://doi.org/10.1016/j.cellsig.2005.03.016>
3. Cheng, C., Noordeloos, A. M., Jeney, V., Soares, M. P., Moll, F., Pasterkamp, G., Serruys, P. W, Duckers, H. J. (2009) Heme oxygenase 1 determines atherosclerotic lesion progression into a vulnerable plaque. Circulation 119, 3017-3027. <https://doi.org/10.1161/CIRCULATIONAHA.108.808618>
4. Colombo, M. G., Paradossi, U., Andreassi, M. G., Botto, N., Manfredi, S., Masetti, S., Biagini, A., Clerico, A. (2003) Endothelial nitric oxide synthase gene polymorphisms and risk of coronary artery disease. Clin. Chem. 49, 389-395. <https://doi.org/10.1373/49.3.389>
5. Dulak, J., Loboda, A., Jazwa, A., Zagorska, A., Dörler, J., Alber, H., Dichtl, W., Weidinger, F., Frick, M., Jozkowicz, A. (2005) Atorvastatin affects several angiogenic mediators in human endothelial cells. Endothelium 12, 233-241. <https://doi.org/10.1080/10623320500476559>
6. Fairchild, T. A., Fulton, D., Fontana, J. T., Gratton, J. P., McCabe, T. J., Sessa, W. C. (2001) Acidic hydrolysis as a mechanism for the cleavage of the Glu(298)→Asp variant of human endothelial nitric-oxide synthase. J. Biol. Chem. 276, 26674-26679. <https://doi.org/10.1074/jbc.M103647200>
7. Förstermann, U. (2010) Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 459, 923-939. <https://doi.org/10.1007/s00424-010-0808-2>
8. García-García, H. M., Mintz, G. S., Lerman, A., Vince, D. G., Margolis, M. P., van Es, G. A., Morel, M. A., Nair, A., Virmani, R., Burke, A. P., Stone, G. W., Serruys, P. W. (2009) Tissue characterisation using intravascular radiofrequency data analysis: recommendations for acquisition, analysis, interpretation and reporting. EuroIntervention 5, 177-189. <https://doi.org/10.4244/EIJV5I2A29>
9. Gardemann, A., Lohre, J., Cayci, S., Katz, N., Tillmanns, H., Haberbosch, W. (2002) The T allele of the missense Glu(298)Asp endothelial nitric oxide synthase gene polymorphism is associated with coronary heart disease in younger individuals with high atherosclerotic risk profile. Atherosclerosis 160, 167-175. <https://doi.org/10.1016/S0021-9150(01)00554-8>
10. Idriss, N. K., Blann, A. D., Lip, G. Y. (2008) Hemoxygenase-1 in cardiovascular disease. J. Am. Coll. Cardiol. 52, 971-978. <https://doi.org/10.1016/j.jacc.2008.06.019>
11. Jaramillo, P. C., Lanas, C., Lanas, F., Salazar, L. A. (2010) Polymorphisms of the NOS3 gene in Southern Chilean subjects with coronary artery disease and controls. Clin. Chim. Acta. 411, 258-262. <https://doi.org/10.1016/j.cca.2009.11.018>
12. Juan, S. H., Lee, T. S., Tseng, K. W., Liou, J. Y., Shyue, S. K., Wu, K. K., Chau, L. Y. (2001) Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 104, 1519-1525. <https://doi.org/10.1161/hc3801.095663>
13. Kaneda, H., Ohno, M., Taguchi, J., Togo, M., Hashimoto, H., Ogasawara, K., Aizawa, T., Ishizaka, N., Nagai, R. (2002) Heme oxygenase-1 gene promoter polymorphism is associated with coronary artery disease in Japanese patients with coronary risk factors. Arterioscler. Thromb. Vasc. Biol. 22, 1680-1685. <https://doi.org/10.1161/01.ATV.0000033515.96747.6F>
14. Kauser, K., da Cunha, V., Fitch, R., Mallari, C., Rubanyi, G. M. (2000) Role of endogenous nitric oxide in progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 278, H1679-1685. <https://doi.org/10.1152/ajpheart.2000.278.5.H1679>
15. Kawamura, K., Ishikawa, K., Wada, Y., Kimura, S., Matsumoto, H., Kohro, T., Itabe, H., Kodama, T., Maruyama, Y. (2005) Bilirubin from heme oxygenase-1 attenuates vascular endothelial activation and dysfunction. Arterioscler. Thromb. Vasc. Biol. 25, 155-160. <https://doi.org/10.1161/01.ATV.0000148405.18071.6a>
16. Kuhlencordt, P. J., Gyurko, R., Han, F., Scherrer-Crosbie, M., Aretz, T. H., Hajjar, R., Picard, M. H., Huang, P. L. (2001) Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double knockout mice. Circulation 104, 448-454. <https://doi.org/10.1161/hc2901.091399>
17. Kushida, T., LiVolti, G., Goodman, A. I., Abraham, N. G. (2002) TNF-α-mediated cell death is attenuated by retrovirus delivery of human heme oxygenase-1 gene into human microvessel endothelial cells. Transplant. Proc. 34, 2973-2978. <https://doi.org/10.1016/S0041-1345(02)03506-6>
18. Larsen, K., Cheng, C., Duckers, H. J. (2010) Regulation of vulnerable plaque development by the heme oxygenase/ carbon monoxide system. Trends Cardiovasc. Med. 20, 58-65. <https://doi.org/10.1016/j.tcm.2010.04.001>
19. Li, J., Wu, X., Li, X., Feng, G., He, L., Shi, Y. (2010) The endothelial nitric oxide synthase gene is associated with coronary artery disease: a meta-analysis. Cardiology 116, 271-278. <https://doi.org/10.1159/000316063>
20. Mintz, G. S., Maehara, A. (2009) Serial intravascular ultrasound assessment of atherosclerosis progression and regression. State-of-the-art and limitations. Circ. J. 73, 1557-1560. <https://doi.org/10.1253/circj.CJ-09-0475>
21. Morita, T., Mitsialis, S. A., Hioke, H., Liu, Y., Kourembanas, S. (1997) Carbon monooxide controls the proliferation of hypoxic smooth muscle cells. J. Biol. Chem. 272, 32804-32809. <https://doi.org/10.1074/jbc.272.52.32804>
22. Morita, T. (2005) Heme oxygenase and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 25, 1786-1795. <https://doi.org/10.1161/01.ATV.0000178169.95781.49>
23. Naber, C. K., Baumgart, D., Altmann, C., Siffert, W., Erbel, R., Heusch, G. (2001) ENOS 894T allele and coronary blood flow at rest and during adenosine-induced hyperemia. Am. J. Physiol. Heart Circ. Physiol. 5, H1908-1912. <https://doi.org/10.1152/ajpheart.2001.281.5.H1908>
24. Nissen, S. E., Nicholls, S. J., Sipahi, I., Libby, P., Raichlen, J. S., Ballantyne, C. M. (2006) Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: The ASTEROID trial. J. Am. Med. Assoc. 295, 1556-1565. <https://doi.org/10.1001/jama.295.13.jpc60002>
25. Pfohl, M., Athanasiadis, A., Koch, M., Clemens, P., Benda, N., Häring, H. U., Karsch, K. R. (1998) Insertion/deletion polymorphism of the angiotensin I-converting enzyme gene is associated with coronary artery plaque calcification as assessed by intravascular ultrasound. J. Am. Coll. Cardiol. 31, 987-991. <https://doi.org/10.1016/S0735-1097(98)00044-8>
26. Pinderski, L. J., Fischbein, M. P., Subbanagounder, G., Fishbein, M. C., Kubo, N., Cheroutre, H., Curtiss, L. K., Berliner, J. A., Boisvert, W. A. (2002) Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ. Res. 90, 1064-1071. <https://doi.org/10.1161/01.RES.0000018941.10726.FA>
27. Rodriguez, A. I., Gangopadhyay, A., Kelley, E. E., Pagano, P. J., Zuckerbraun, B. S., Bauer, P. M. (2010) HO-1 and CO decrease platelet derived growth factor-induced vascular smooth muscle cell migration via inhibition of Nox1. Arterioscler. Thromb. Vasc. Biol. 30, 98-104. <https://doi.org/10.1161/ATVBAHA.109.197822>
28. Rodriguez-Granillo, G. A., Aoki, J., Ong, A. T., Valgimigli, M., Van Mieghem, C. A., Regar, E., McFadden, E., De Feyter, P., Serruys, P. W. (2005) Methodological considerations and approach to cross-technique comparisons using in vivo coronary plaque characterization based on intravascular radiofrequency data anlaysis: insights from the integrated Biomarker and Imaging Study (IBIS). Int. J. Cardiovasc. Intervent. 7, 52-58. <https://doi.org/10.1080/14628840410030559>
29. Tabas, I., Seimon, T., Timmins, J., Li, G., Lim, W. (2009) Macrophage apoptosis in advanced atherosclerosis. Ann. N. Y. Acad. Sci. 1173, E40-45. <https://doi.org/10.1111/j.1749-6632.2009.04957.x>
30. Tavridou, A., Efthimiadis, A., Efthimiadis, I., Manolopoulos, V. G. (2010) Simvastatin-induced changes in circulating oxidized low-density lipoprotein in different types of dyslipidemia. Heart Vessels 25, 288-293. <https://doi.org/10.1007/s00380-009-1202-x>
31. Tesauro, M., Thompson, W. C., Rogliani, P., Qi, L., Chaudhary, P. P., Moss, J. (2000) Intracellular processing of endothelial nitric oxide synthase isoforms associated with differences in severity of cardiopulmonary diseases: cleavage of proteins with aspartate vs. glutamate at position 298. Proc. Natl. Acad. Sci. USA 6, 2832-2835. <https://doi.org/10.1073/pnas.97.6.2832>
32. Tomita, H., Egashira, K., Kubo-Inoue, M., Usui, M., Koyanagi, M., Shimokawa, H., Takeya, M., Yoshimura, T., Takeshita, A. (1998) Inhibition of NO synthesis induces inflammatory changes and monocyte chemoattractant protein-1 expression in rat hearts and vessels. Arterioscler. Thromb. Vasc. Biol. 18, 1456-1464. <https://doi.org/10.1161/01.ATV.18.9.1456>
33. Tsutsui, M., Shimokawa, H., Otsuji, Y., Yanagihara, N. (2010) Pathophysiological relevance of NO signaling in the cardiovascular system: novel insight from mice lacking all NO synthases. Pharmacol. Ther. 128, 499-508. <https://doi.org/10.1016/j.pharmthera.2010.08.010>
34. Veldman, B.A., Spiering, W., Doevendans, P. A., Vervoort, G., Kroon, A. A., de Leeuw, P. W., Smits, P. (2002) The Glu298Asp polymorphism of the NOS 3 gene as a determinant of the baseline production of nitric oxide. J. Hypertens. 20, 2023-2027. <https://doi.org/10.1097/00004872-200210000-00022>
35. Virmani, R., Burke, A. P., Farb, A., Kolodgie, F. D. (2006) Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47, C13-18. <https://doi.org/10.1016/j.jacc.2005.10.065>
36. Wang, X. L., Sim, A. S., Wang, M. X., Murrell, G. A., Trudinger, B., Wang, J. (2000) Genotype dependent and cigarette specific effects on endothelial nitric oxide synthase gene expression and enzyme activity. FEBS Lett. 1, 45-50. <https://doi.org/10.1016/S0014-5793(00)01356-9>
37. Wang, X. L., Wang, J. (2000) Endothelial nitric oxide synthase gene sequence variations and vascular disease. Mol. Genet. Metab. 70, 241-251. <https://doi.org/10.1006/mgme.2000.3033>
38. Yachie, A., Niida, Y., Wada, T., Igarashi, N., Kaneda, H., Toma, T., Ohta, K., Kasahara, Y., Koizumi, S, (1999) Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest. 103, 129-135. <https://doi.org/10.1172/JCI4165>
39. Yet, S. F., Layne, M. D., Liu, X., Chen, Y. H., Ith, B., Sibinga, N. E., Perrella, M. A. (2003) Absence of heme oxygenase1 exacerbates atherosclerotic lesion formation and vascular remodeling. FASEB J. 17, 1759-1761. <https://doi.org/10.1096/fj.03-0187fje>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive