Fol. Biol. 2011, 57, 232-241

https://doi.org/10.14712/fb2011057060232

Role of Transplanted Bone Marrow Cells in Response to Skeletal Muscle Injury

Dana Čížková1, J. Vávrová2, S. Mičuda3, S. Filip4, E. Brčáková3, L. Brůčková1, J. Mokrý1

1Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic
2Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Czech Republic
3Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic
4Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic

Received July 2011
Accepted October 2011

References

1. Abedi, M., Greer, D. A., Foster, B. M., Colvin, G. A., Harpel, J. A., Demers, D. A., Pimentel, J., Dooner, M. S., Quesenberry, P. J. (2005) Critical variables in the conversion of marrow cells to skeletal muscle. Blood 106, 1488-1494. <https://doi.org/10.1182/blood-2005-01-0264>
2. Abedi, M., Foster, B. M., Wood, K. D., Colvin, G. A., McLean, S. D., Johnson, K. W., Greer, D. A. (2007) Haematopoietic stem cells participate in muscle regeneration. Br. J. Haematol. 138, 792-801. <https://doi.org/10.1111/j.1365-2141.2007.06720.x>
3. Bignami, A., Dahl, D. (1984) Early appearance of desmin, the muscle-type intermediate filament protein, in the rat embryo. J. Histochem. Cytochem. 32, 473-476. <https://doi.org/10.1177/32.5.6371130>
4. Brazelton, T. R., Rossi, F. M., Keshet, G. I., Blau, H. M. (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775-1779. <https://doi.org/10.1126/science.290.5497.1775>
5. Brazelton, T. R., Nystrom, M., Blau, H. M. (2003) Significant differences among skeletal muscles in the incorporation of bone marrow-derived cells. Dev. Biol. 262, 64-74. <https://doi.org/10.1016/S0012-1606(03)00357-9>
6. Camargo, F. D., Green, R., Capetanaki, Y., Jackson, K. A., Goodell, M. A. (2003) Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat. Med. 9, 1520-1527. <https://doi.org/10.1038/nm963>
7. Camargo, F. D., Finegold, M., Goodell, M. A. (2004) Hematopoietic myelomonocytic cells are the major source of hepatocyte vision partners. J. Clin. Invest. 113, 1266-1270. <https://doi.org/10.1172/JCI21301>
8. Carlsson, L., Li, Z., Paulin, D., Thornell, L. E. (1999) Nestin is expressed during development and in myotendinous and neuromuscular junctions in wild type and desmin knockout mice. Exp. Cell Res. 251, 213-223. <https://doi.org/10.1006/excr.1999.4569>
9. Čížková, D., Soukup, T., Mokrý, J. (2009a) Expression of nestin, desmin and vimentin in intact and regenerating muscle spindles of rat hind limb skeletal muscles. Histochem. Cell Biol. 131, 197-206. <https://doi.org/10.1007/s00418-008-0523-7>
10. Čížková, D., Soukup, T., Mokrý, J. (2009b) Nestin expression reflects formation, revascularization and reinnervation of new myofibers in regenerating rat hind limb skeletal muscles. Cells Tissues Organs 189, 338-347. <https://doi.org/10.1159/000142161>
11. Coates, P. J., Lorimore, S. A., Rigat, B. A., Lane, D. P., Wright, E. G. (2001) Induction of endogenous ß-galactosidase by ionizing radiation complicates the analysis of p53-LacZ transgenic mice. Oncogene 20, 7096-7097. <https://doi.org/10.1038/sj.onc.1204904>
12. Corbel, S. Y., Lee, A., Yi, L., Duenas, J., Brazelton, T. R., Blau, H. M., Rossi F. M. (2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat. Med. 9, 1528-1532. <https://doi.org/10.1038/nm959>
13. Couteaux, R., Mira, J. C., d’Albis, A. (1988) Regeneration of muscles after cardiotoxin injury. I. Cytological aspects. Biol. Cell 62, 171-182. <https://doi.org/10.1111/j.1768-322X.1988.tb00719.x>
14. de la Garza-Rodea, A. S., van der Velde, I., Boersma, H., Gonçalves, M. A., van Bekkum, D. W., de Vries, A. A., Knaän-Shanzer, S. (2011) Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice. Cell Transplant. 20, 217-231. <https://doi.org/10.3727/096368910X522117>
15. Dezawa, M., Ishikawa, H., Itokazu, Y., Yoshihara, T., Hoshino, M., Takeda, S., Ide, C., Nabeshima, Y. (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309, 314-317. <https://doi.org/10.1126/science.1110364>
16. Doyonnas, R., LaBarge, M. A., Sacco, A., Charlton, C., Blau, H. M. (2004) Hematopoietic contribution to skeletal muscle regeneration by myelomonocytic precursors. Proc. Natl. Acad. Sci. USA 101, 13507-13512. <https://doi.org/10.1073/pnas.0405361101>
17. Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., Mavilio, F. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528-1530. <https://doi.org/10.1126/science.279.5356.1528>
18. Fukada, S., Miyagoe-Suzuki, Y., Tsukihara, H., Yuasa, K., Higuchi, S., Ono, S., Tsujikawa, K., Takeda, S., Yamamoto, H. (2002) Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent proteingene transgenic mice. J. Cell Sci. 115, 1285-1293. <https://doi.org/10.1242/jcs.115.6.1285>
19. Fuksa, L., Brcakova, E., Kolouchova, G., Hirsova, P., Hroch, M., Cermanova, J., Staud, F., Micuda, S. (2010) Dexamethasone reduces methotrexate biliary elimination and potentiates its hepatotoxicity in rats. Toxicology 267, 165-171. <https://doi.org/10.1016/j.tox.2009.11.010>
20. Fürst, D. O., Osborn, M., Weber, K. (1989) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J. Cell Biol. 109, 517-527. <https://doi.org/10.1083/jcb.109.2.517>
21. Gussoni, E., Soneoka, Y., Strickland, C. D., Buzney, E. A., Khan, M. K., Flint, A. F., Kunkel, L. M., Mulligan, R. C. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390-394.
22. Heslop, L., Morgan, J. E., Partridge, T. A. (2000) Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J. Cell Sci. 113, 2299-2308. <https://doi.org/10.1242/jcs.113.12.2299>
23. Kachinsky, A. M., Dominov, J. A., Miller, J. B. (1994) Myogenesis and the intermediate filament protein, nestin. Dev. Biol. 165, 216-228. <https://doi.org/10.1006/dbio.1994.1248>
24. Kopp, H. G., Hooper, A. T., Shmelkov, S. V., Rafii, S. (2007) ß-galactosidase staining on bone marrow. The osteoclast pitfall. Histol. Histopathol. 22, 971-976.
25. LaBarge, M. A., Blau, H. M. (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111, 589-601. <https://doi.org/10.1016/S0092-8674(02)01078-4>
26. Lagasse, E., Connors, H., Al-Dhalimy, M., Reitsma, M., Dohse, M., Osborne, L., Wang, X., Finegold, M., Weissman, I. L., Grompe, M. (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6, 1229-1234. <https://doi.org/10.1038/81326>
27. Lescaudron, L., Peltékian, E., Fontaine-Pérus, J., Paulin, D., Zampieri, M., Garcia, L., Parrish, E. (1999) Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul. Disord. 9, 72-80. <https://doi.org/10.1016/S0960-8966(98)00111-4>
28. Li, Z., Mericskay, M., Agbulut, O., Butler-Browne, G., Carlsson, L., Thornell, L. E., Babinet, C., Paulin, D. (1997) Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J. Cell Biol. 139, 29-44.
29. Luth, E. S., Jun, S. J., Wessen, M. K., Liadaki, K., Gussoni, E., Kunkel, L. M. (2008) Bone marrow side population cells are enriched for progenitors capable of myogenic differentiation. J. Cell Sci. 121, 1426-1434. <https://doi.org/10.1242/jcs.021675>
30. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., McKercher, S. R. (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779-1782. <https://doi.org/10.1126/science.290.5497.1779>
31. Mokrý, J., Čížková, D., Filip, S., Ehrmann, J., Österreicher, J., Kolář, Z., English, D. (2004) Nestin expression by newly formed human blood vessels. Stem Cells Dev. 13, 658-664. <https://doi.org/10.1089/scd.2004.13.658>
32. Ownby, C. L., Fletcher, J. E., Colberg, T. R. (1993) Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon 31, 697-709. <https://doi.org/10.1016/0041-0101(93)90376-T>
33. Pagel, C. N., Partridge, T. A. (1999) Covert persistence of mdx mouse myopathy is revealed by acute and chronic effects of irradiation. J. Neurol. Sci. 164, 103-116. <https://doi.org/10.1016/S0022-510X(99)00061-1>
34. Palermo, A. T., Labarge, M. A., Doyonnas, R., Pomerantz, J., Blau, H. M. (2005) Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev. Biol. 279, 336-344. <https://doi.org/10.1016/j.ydbio.2004.12.024>
35. Priller, J., Persons, D. A., Klett, F. F., Kempermann, G., Kreutzberg, G. W., Dirnagl, U. (2001) Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J. Cell Biol. 155, 733-738. <https://doi.org/10.1083/jcb.200105103>
36. Sacco, A., Doyonnas, R., LaBarge, M. A., Hammer, M. M., Kraft, P., Blau, H. M. (2005) IGF-I increases bone marrow contribution to adult skeletal muscle and enhances the fusion of myelomonocytic precursors. J. Cell Biol. 171, 483-492. <https://doi.org/10.1083/jcb.200506123>
37. Sejersen, T., Lendahl, U. (1993) Transient expression of the intermediate filament nestin during skeletal muscle development. J. Cell Sci. 106, 1291-1300. <https://doi.org/10.1242/jcs.106.4.1291>
38. Vaittinen, S., Lukka, R., Sahlgren, C., Rantanen, J., Hurme, T., Lendahl, U., Eriksson, J. E., Kalimo, H. (1999) Specific and innervation-regulated expression of the intermediate filament protein nestin at neuromuscular and myotendinous junctions in skeletal muscle. Am. J. Pathol. 154, 591-600. <https://doi.org/10.1016/S0002-9440(10)65304-7>
39. Vaittinen, S., Lukka, R., Sahlgren, C., Hurme, T., Rantanen, J., Lendahl, U., Eriksson, J. E., Kalimo, H. (2001) The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J. Neuropathol. Exp. Neurol. 60, 588-597. <https://doi.org/10.1093/jnen/60.6.588>
40. Wakeford, S., Watt, D. J., Partridge, T. A. (1991) X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD. Muscle Nerve 14, 42-50. <https://doi.org/10.1002/mus.880140108>
41. Willenbring, H., Bailey, A. S., Foster, M., Akkari, Y., Dorrell, C., Olson, S., Finegold, M., Fleming, W. H., Grompe, M. (2004) Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat. Med. 10, 744-748. <https://doi.org/10.1038/nm1062>
42. Zhao, Y., Urganus, A. L., Spevak, L., Shrestha, S., Doty, S. B., Boskey, A. L., Pachman, L. M. (2009) Characterization of dystrophic calcification induced in mice by cardiotoxin. Calcif. Tissue Int. 85, 267-275. <https://doi.org/10.1007/s00223-009-9271-5>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive