Fol. Biol. 2011, 57, 232-241
https://doi.org/10.14712/fb2011057060232
Role of Transplanted Bone Marrow Cells in Response to Skeletal Muscle Injury
References
1. 2005) Critical variables in the conversion of marrow cells to skeletal muscle. Blood 106, 1488-1494.
< , M., Greer, D. A., Foster, B. M., Colvin, G. A., Harpel, J. A., Demers, D. A., Pimentel, J., Dooner, M. S., Quesenberry, P. J. (https://doi.org/10.1182/blood-2005-01-0264>
2. 2007) Haematopoietic stem cells participate in muscle regeneration. Br. J. Haematol. 138, 792-801.
< , M., Foster, B. M., Wood, K. D., Colvin, G. A., McLean, S. D., Johnson, K. W., Greer, D. A. (https://doi.org/10.1111/j.1365-2141.2007.06720.x>
3. 1984) Early appearance of desmin, the muscle-type intermediate filament protein, in the rat embryo. J. Histochem. Cytochem. 32, 473-476.
< , A., Dahl, D. (https://doi.org/10.1177/32.5.6371130>
4. 2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775-1779.
< , T. R., Rossi, F. M., Keshet, G. I., Blau, H. M. (https://doi.org/10.1126/science.290.5497.1775>
5. 2003) Significant differences among skeletal muscles in the incorporation of bone marrow-derived cells. Dev. Biol. 262, 64-74.
< , T. R., Nystrom, M., Blau, H. M. (https://doi.org/10.1016/S0012-1606(03)00357-9>
6. 2003) Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat. Med. 9, 1520-1527.
< , F. D., Green, R., Capetanaki, Y., Jackson, K. A., Goodell, M. A. (https://doi.org/10.1038/nm963>
7. 2004) Hematopoietic myelomonocytic cells are the major source of hepatocyte vision partners. J. Clin. Invest. 113, 1266-1270.
< , F. D., Finegold, M., Goodell, M. A. (https://doi.org/10.1172/JCI21301>
8. 1999) Nestin is expressed during development and in myotendinous and neuromuscular junctions in wild type and desmin knockout mice. Exp. Cell Res. 251, 213-223.
< , L., Li, Z., Paulin, D., Thornell, L. E. (https://doi.org/10.1006/excr.1999.4569>
9. 2009a) Expression of nestin, desmin and vimentin in intact and regenerating muscle spindles of rat hind limb skeletal muscles. Histochem. Cell Biol. 131, 197-206.
< , D., Soukup, T., Mokrý, J. (https://doi.org/10.1007/s00418-008-0523-7>
10. 2009b) Nestin expression reflects formation, revascularization and reinnervation of new myofibers in regenerating rat hind limb skeletal muscles. Cells Tissues Organs 189, 338-347.
< , D., Soukup, T., Mokrý, J. (https://doi.org/10.1159/000142161>
11. 2001) Induction of endogenous ß-galactosidase by ionizing radiation complicates the analysis of p53-LacZ transgenic mice. Oncogene 20, 7096-7097.
< , P. J., Lorimore, S. A., Rigat, B. A., Lane, D. P., Wright, E. G. (https://doi.org/10.1038/sj.onc.1204904>
12. 2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat. Med. 9, 1528-1532.
< , S. Y., Lee, A., Yi, L., Duenas, J., Brazelton, T. R., Blau, H. M., Rossi F. M. (https://doi.org/10.1038/nm959>
13. 1988) Regeneration of muscles after cardiotoxin injury. I. Cytological aspects. Biol. Cell 62, 171-182.
< , R., Mira, J. C., d’Albis, A. (https://doi.org/10.1111/j.1768-322X.1988.tb00719.x>
14. 2011) Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice. Cell Transplant. 20, 217-231.
< , A. S., van der Velde, I., Boersma, H., Gonçalves, M. A., van Bekkum, D. W., de Vries, A. A., Knaän-Shanzer, S. (https://doi.org/10.3727/096368910X522117>
15. 2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309, 314-317.
< , M., Ishikawa, H., Itokazu, Y., Yoshihara, T., Hoshino, M., Takeda, S., Ide, C., Nabeshima, Y. (https://doi.org/10.1126/science.1110364>
16. 2004) Hematopoietic contribution to skeletal muscle regeneration by myelomonocytic precursors. Proc. Natl. Acad. Sci. USA 101, 13507-13512.
< , R., LaBarge, M. A., Sacco, A., Charlton, C., Blau, H. M. (https://doi.org/10.1073/pnas.0405361101>
17. 1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528-1530.
< , G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., Mavilio, F. (https://doi.org/10.1126/science.279.5356.1528>
18. 2002) Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent proteingene transgenic mice. J. Cell Sci. 115, 1285-1293.
< , S., Miyagoe-Suzuki, Y., Tsukihara, H., Yuasa, K., Higuchi, S., Ono, S., Tsujikawa, K., Takeda, S., Yamamoto, H. (https://doi.org/10.1242/jcs.115.6.1285>
19. 2010) Dexamethasone reduces methotrexate biliary elimination and potentiates its hepatotoxicity in rats. Toxicology 267, 165-171.
< , L., Brcakova, E., Kolouchova, G., Hirsova, P., Hroch, M., Cermanova, J., Staud, F., Micuda, S. (https://doi.org/10.1016/j.tox.2009.11.010>
20. 1989) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J. Cell Biol. 109, 517-527.
< , D. O., Osborn, M., Weber, K. (https://doi.org/10.1083/jcb.109.2.517>
21. 1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390-394.
, E., Soneoka, Y., Strickland, C. D., Buzney, E. A., Khan, M. K., Flint, A. F., Kunkel, L. M., Mulligan, R. C. (
22. 2000) Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J. Cell Sci. 113, 2299-2308.
< , L., Morgan, J. E., Partridge, T. A. (https://doi.org/10.1242/jcs.113.12.2299>
23. 1994) Myogenesis and the intermediate filament protein, nestin. Dev. Biol. 165, 216-228.
< , A. M., Dominov, J. A., Miller, J. B. (https://doi.org/10.1006/dbio.1994.1248>
24. 2007) ß-galactosidase staining on bone marrow. The osteoclast pitfall. Histol. Histopathol. 22, 971-976.
, H. G., Hooper, A. T., Shmelkov, S. V., Rafii, S. (
25. 2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111, 589-601.
< , M. A., Blau, H. M. (https://doi.org/10.1016/S0092-8674(02)01078-4>
26. 2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6, 1229-1234.
< , E., Connors, H., Al-Dhalimy, M., Reitsma, M., Dohse, M., Osborne, L., Wang, X., Finegold, M., Weissman, I. L., Grompe, M. (https://doi.org/10.1038/81326>
27. 1999) Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul. Disord. 9, 72-80.
< , L., Peltékian, E., Fontaine-Pérus, J., Paulin, D., Zampieri, M., Garcia, L., Parrish, E. (https://doi.org/10.1016/S0960-8966(98)00111-4>
28. 1997) Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J. Cell Biol. 139, 29-44.
, Z., Mericskay, M., Agbulut, O., Butler-Browne, G., Carlsson, L., Thornell, L. E., Babinet, C., Paulin, D. (
29. 2008) Bone marrow side population cells are enriched for progenitors capable of myogenic differentiation. J. Cell Sci. 121, 1426-1434.
< , E. S., Jun, S. J., Wessen, M. K., Liadaki, K., Gussoni, E., Kunkel, L. M. (https://doi.org/10.1242/jcs.021675>
30. 2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779-1782.
< , E., Chandross, K. J., Harta, G., Maki, R. A., McKercher, S. R. (https://doi.org/10.1126/science.290.5497.1779>
31. 2004) Nestin expression by newly formed human blood vessels. Stem Cells Dev. 13, 658-664.
< , J., Čížková, D., Filip, S., Ehrmann, J., Österreicher, J., Kolář, Z., English, D. (https://doi.org/10.1089/scd.2004.13.658>
32. 1993) Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon 31, 697-709.
< , C. L., Fletcher, J. E., Colberg, T. R. (https://doi.org/10.1016/0041-0101(93)90376-T>
33. 1999) Covert persistence of mdx mouse myopathy is revealed by acute and chronic effects of irradiation. J. Neurol. Sci. 164, 103-116.
< , C. N., Partridge, T. A. (https://doi.org/10.1016/S0022-510X(99)00061-1>
34. 2005) Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev. Biol. 279, 336-344.
< , A. T., Labarge, M. A., Doyonnas, R., Pomerantz, J., Blau, H. M. (https://doi.org/10.1016/j.ydbio.2004.12.024>
35. 2001) Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J. Cell Biol. 155, 733-738.
< , J., Persons, D. A., Klett, F. F., Kempermann, G., Kreutzberg, G. W., Dirnagl, U. (https://doi.org/10.1083/jcb.200105103>
36. 2005) IGF-I increases bone marrow contribution to adult skeletal muscle and enhances the fusion of myelomonocytic precursors. J. Cell Biol. 171, 483-492.
< , A., Doyonnas, R., LaBarge, M. A., Hammer, M. M., Kraft, P., Blau, H. M. (https://doi.org/10.1083/jcb.200506123>
37. 1993) Transient expression of the intermediate filament nestin during skeletal muscle development. J. Cell Sci. 106, 1291-1300.
< , T., Lendahl, U. (https://doi.org/10.1242/jcs.106.4.1291>
38. 1999) Specific and innervation-regulated expression of the intermediate filament protein nestin at neuromuscular and myotendinous junctions in skeletal muscle. Am. J. Pathol. 154, 591-600.
< , S., Lukka, R., Sahlgren, C., Rantanen, J., Hurme, T., Lendahl, U., Eriksson, J. E., Kalimo, H. (https://doi.org/10.1016/S0002-9440(10)65304-7>
39. 2001) The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J. Neuropathol. Exp. Neurol. 60, 588-597.
< , S., Lukka, R., Sahlgren, C., Hurme, T., Rantanen, J., Lendahl, U., Eriksson, J. E., Kalimo, H. (https://doi.org/10.1093/jnen/60.6.588>
40. 1991) X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD. Muscle Nerve 14, 42-50.
< , S., Watt, D. J., Partridge, T. A. (https://doi.org/10.1002/mus.880140108>
41. 2004) Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat. Med. 10, 744-748.
< , H., Bailey, A. S., Foster, M., Akkari, Y., Dorrell, C., Olson, S., Finegold, M., Fleming, W. H., Grompe, M. (https://doi.org/10.1038/nm1062>
42. 2009) Characterization of dystrophic calcification induced in mice by cardiotoxin. Calcif. Tissue Int. 85, 267-275.
< , Y., Urganus, A. L., Spevak, L., Shrestha, S., Doty, S. B., Boskey, A. L., Pachman, L. M. (https://doi.org/10.1007/s00223-009-9271-5>