Fol. Biol. 2012, 58, 16-23

https://doi.org/10.14712/fb2012058010016

TRAF2 Docking with Related Proteins in Silico Studies

Fanlong Zeng1, Q. Wu2, E. Guo1, H. Guo1, H. Wang1, J. Shan1, R. Wei1

1Department of Medical Biology, Hubei University of Medicine, Hubei, PRC
2Department of Otolaryngology, Taihe Hospital, Shiyan, Hubei, PRC

Received June 2011
Accepted November 2011

References

1. Carpentier, I., Coornaert, B., Beyaert, R. (2008) Smurf2 is a TRAF2 binding protein that triggers TNF-R2 ubiquitination and TnF-R2-induced JnK activation. Biochem. Biophys. Res. Commun. 374, 752-757. <https://doi.org/10.1016/j.bbrc.2008.07.103>
2. Courtois, G. (2008) Tumor suppressor CYLD: negative regulation of NF-κB signaling and more. Cell. Mol. Life Sci. 65, 1123-1132. <https://doi.org/10.1007/s00018-007-7465-4>
3. Dai, S., Jiang, L., Wang, G., Zhou, X., Wei, X., Cheng, H., Wu, Z., Wei, D. (2010) HSP70 interacts with TRAF2 and differentially regulates TNFα signalling in human colon cancer cells. J. Cell. Mol. Med. 14, 710-725. <https://doi.org/10.1111/j.1582-4934.2009.00716.x>
4. Duckett, C. S., Thompson, C. B. (1997) CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes Dev. 11, 2810-2821. <https://doi.org/10.1101/gad.11.21.2810>
5. Ely, K. R., Kodandapani, R., Wu, S. (2007) Protein-protein interactions in TRAF3. Adv. Exp. Med. Biol. 597, 114-121. <https://doi.org/10.1007/978-0-387-70630-6_9>
6. Gardam, S., Turner, V. M., Anderton, H., Limaye, S., Basten, A., Koentgen, F., Vaux, D. L., Silke, J., Brink, R. (2011) Deletion of ciAP1 and ciAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 117, 4041-4051. <https://doi.org/10.1182/blood-2010-10-312793>
7. Giron-Michel, J., Fogli, M., Gaggero, A., Ferrini, S., Caignard, A., Brouty-Boye, D., Baouz, S., Le Bousse-Kerdiles, M. C., Peault, B., van Dijk, M., Bulfone-Paus, S., Durali, D., Chouaib, S., Azzarone, B. (2003) Detection of a functional hybrid receptor γc/GM-CSFRβ in human hematopoietic CD34+ cells. J. Exp. Med. 197, 763-775. <https://doi.org/10.1084/jem.20020150>
8. Gotoh, Y., Oishi, K., Shibata, H., Yamagiwa, A., Isagawa, T., Nishimura, T., Goyama, E., Takahashi, M., Mukai, H., Ono, Y. (2004) Protein kinase PKN1 associates with TRAF2 and is involved in TRAF2-NF-κB signaling pathway. Biochem. Biophys. Res. Commun. 314, 688-694. <https://doi.org/10.1016/j.bbrc.2003.12.148>
9. Graham, J. P., Moore, C. R., Bishop, G. A. (2009) Roles of the TRAF2/3 binding site in differential B cell signaling by CD40 and its viral oncogenic mimic, LMP1. J. Immunol. 183, 2966-2973. <https://doi.org/10.4049/jimmunol.0900442>
10. He, L., Grammer, A. C., Wu, X., Lipsky, P. E. (2004) TRAF3 forms heterotrimers with TRAF2 and modulates its ability to mediate NF-κB activation. J. Biol. Chem. 279, 55855-55865. <https://doi.org/10.1074/jbc.M407284200>
11. Hong, S., Lim, S., Li, A. G., Lee, C., Lee, Y. S., Lee, E. K., Park, S. H., Wang, X. J., Kim, S. J. (2007) Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat. Immunol. 8, 504-513. <https://doi.org/10.1038/ni1451>
12. Hussain, N. K., Hsin, H., Huganir, R. L., Sheng, M. (2010) MINK and TNIK differentially act on Rap2-mediated signal transduction to regulate neuronal structure and AMPA receptor function. J. Neurosci. 30, 14786-14794. <https://doi.org/10.1523/JNEUROSCI.4124-10.2010>
13. Kawamata, Y., imamura, T., Babendure, J. L., Lu, J. C., Yoshizaki, T., olefsky, J. M. (2007) Tumor necrosis factor receptor-1 can function through a G αq/11-β-arrestin-1 signaling complex. J. Biol. Chem. 282, 28549-28556. <https://doi.org/10.1074/jbc.M705869200>
14. Lad, S. P., Yang, G., Scott, D. A., Chao, T. H., Correia Jda, S., de la Torre, J. C., Li, E. (2008) Identification of MAVS splicing variants that interfere with Rigi/MAVS pathway signaling. Mol. Immunol. 45, 2277-2287. <https://doi.org/10.1016/j.molimm.2007.11.018>
15. Li, H., Mittal, A., Paul, P. K., Kumar, M., Srivastava, D. S., Tyagi, S. C., Kumar, A. (2009) Tumor necrosis factor-related weak inducer of apoptosis augments matrix metalloproteinase 9 (MMP-9) production in skeletal muscle through the activation of nuclear factor-κB-inducing kinase and p38 mitogen-activated protein kinase: a potential role of MMP-9 in myopathy. J. Biol. Chem. 284, 4439-4450. <https://doi.org/10.1074/jbc.M805546200>
16. Mahalingam, D., Keane, M., Pirianov, G., Mehmet, H., Samali, A., Szegezdi, E. (2009) Differential activation of JNK1 isoforms by TRAIL receptors modulates apoptosis of colon cancer cell lines. Br. J. Cancer. 100, 1415-1424. <https://doi.org/10.1038/sj.bjc.6605021>
17. Mikkelsen, S. S., Jensen, S. B., Chiliveru, S., Melchjorsen, J., Julkunen, I., Gaestel, M., Arthur, J. S., Flavell, R. A., Ghosh, S., Paludan, S. R. (2009) RIG-I-mediated activation of p38 MAPK is essential for viral induction of interferon and activation of dendritic cells: dependence on TRAF2 and TAK1. J. Biol. Chem. 284, 10774-10782. <https://doi.org/10.1074/jbc.M807272200>
18. Pomerantz, J. L., Baltimore, D. (1999) NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694-6704. <https://doi.org/10.1093/emboj/18.23.6694>
19. Ritchie, D. W. (2008) Recent progress and future directions in protein-protein docking. Curr. Protein Pept. Sci. 9, 1-15. <https://doi.org/10.2174/138920308783565741>
20. Ritchie, D. W., Kozakov, D., Vajda, S. (2008) Accelerating protein-protein docking correlations using a six-dimensional analytic FFT generating function. Bioinformatics 24, 1865-1873. <https://doi.org/10.1093/bioinformatics/btn334>
21. Sethi, G., Ahn, K. S., Sung, B., Kunnumakkara, A. B., Chaturvedi, M. M., Aggarwal, B. B. (2008) SH-5, an AKT inhibitor potentiates apoptosis and inhibits invasion through the suppression of anti-apoptotic, proliferative and metastatic gene products regulated by IκBα kinase activation. Biochem. Pharmacol. 76, 1404-1416. <https://doi.org/10.1016/j.bcp.2008.05.023>
22. Shembade, N., Ma, A., Harhaj, E. W. (2010) Inhibition of NFκB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135-1139. <https://doi.org/10.1126/science.1182364>
23. Shimada, K., Ikeda, K., Ito, K. (2009) TRAF2 interacts with Smad4 and regulates BMP signaling pathway in MC3T3-e1 osteoblasts. Biochem. Biophys. Res. Commun. 390, 775-779. <https://doi.org/10.1016/j.bbrc.2009.10.048>
24. Tsao, D. H., McDonagh, T., Telliez, J. B., Hsu, S., Malakian, K., Xu, G. Y., Lin, L. L. (2000) Solution structure of n-TRADD and characterization of the interaction of n-TRADD and C-TRAF2, a key step in the TnFR1 signaling pathway. Mol. Cell. 5, 1051-1057. <https://doi.org/10.1016/S1097-2765(00)80270-1>
25. Wicovsky, A., Henkler, F., Salzmann, S., Scheurich, P., Kneitz, C, Wajant, H. (2009) Tumor necrosis factor receptor-associated factor-1 enhances proinflammatory TNF receptor-2 signaling and modifies TNFR1-TNFR2 cooperation. Oncogene 28, 1769-1781. <https://doi.org/10.1038/onc.2009.29>
26. Ye, X., Mehlen, P., Rabizadeh, S., VanArsdale, T., Zhang, H., Shin, H., Wang, J. J., Leo, E., Zapata, J., Hauser, C. A., Reed, J. C., Bredesen, D. E. (1999) TRAF family proteins interact with the common neurotrophin receptor and modulate apoptosis induction. J. Biol. Chem. 274, 30202-30208. <https://doi.org/10.1074/jbc.274.42.30202>
27. Zhang, H. G., Wang, J., Yang, X., Hsu, H. C., Mountz, J. D. (2004) Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 23, 2009-2015. <https://doi.org/10.1038/sj.onc.1207373>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive