Fol. Biol. 2012, 58, 44-48

https://doi.org/10.14712/fb2012058010044

Electrochemical Evaluation of Extremely-Low Frequency Magnetic Field Effects on Sulphate-Reducing Bacteria

Lukáš Fojt, V. Vetterl

Institute of Biophysics, Academy of Sciences of the Czech Republic, v. v. i., Brno, Czech Republic

Received June 2011
Accepted December 2011

References

1. Babushkina, I. V., Borodin, V. B., Smetkova, N. A., Morrison, V. V., Usanov, A. D., Skripal, A.V., Usanov, D. A. (2005) The influence of alternating magnetic field on Escherichia coli bacterial cells. Pharm. Chem. J. 39, 398-400. <https://doi.org/10.1007/s11094-005-0166-0>
2. Berg, H. (1999) Problems of weak electromagnetic field effects in cell biology. Bioelectrochem. Bioenerg. 48, 355-360. <https://doi.org/10.1016/S0302-4598(99)00012-4>
3. Blank, M., Goodmann, R. (2001) Electromagnetic initiation of transcription at specific DNA sites. J. Cell. Biochem. 81, 689-692. <https://doi.org/10.1002/jcb.1102>
4. Fitzsimmons, R. J., Ryaby, J. T., Magee, F. P., Baylink, D. J. (1994) Combined magnetic fields increased net calcium flux in bone cells. Calcif. Tissue Int. 55, 376-380. <https://doi.org/10.1007/BF00299318>
5. Fojt, L., Strašák, L., Vetterl, V., Šmarda, J. (2004) Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry 63, 337-341. <https://doi.org/10.1016/j.bioelechem.2003.11.010>
6. Fojt, L., Hasoň, S. (2006) Sensitive determination of oligodeoxynucleotides by anodic adsorptive stripping voltammetry at surface-roughened glassy carbon electrode in the presence of copper. J. Electroanal. Chem. 586, 136-143. <https://doi.org/10.1016/j.jelechem.2005.07.027>
7. Fojt, L., Strašák, L., Vetterl, V. (2007) Effect of electromagnetic fields on the denitrification activity of Paracoccus denitrificans. Bioelectrochemistry 70, 91-95. <https://doi.org/10.1016/j.bioelechem.2006.03.023>
8. Fojt, L., Klapetek, P., Strašák, L., Vetterl, V. (2009) 50 Hz magnetic field effect on the morphology of bacteria. Micron 40, 918-922. <https://doi.org/10.1016/j.micron.2009.06.009>
9. Fojt, L., Strašák, L., Vetterl, V. (2010) Extremely-low frequency magnetic field effects on sulfate reducing bacteria viability. Electromagn. Biol. Med. 29, 177-185. <https://doi.org/10.3109/15368378.2010.513304>
10. Grassi, C., D’Ascenzo, M., Torsello, A., Martinotti, G., Wolf, F., Cittadini, A., Azzena, G. B. (2004) Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 354, 307-315. <https://doi.org/10.1016/j.ceca.2003.09.001>
11. Hone, P., Lloyd, D., Szluinska, M., Edwards, A. (2006) Chromatid damage in human lymphocytes is not affected by 50 Hz electromagnetic fields. Radiat. Prot. Dosim. 121, 321-324. <https://doi.org/10.1093/rpd/ncl035>
12. Höytö, A., Sihvonen, A. P., Alhonen, L., Juutilainen, J., Naarala, J. (2006) Modest increase in temperature affects ODC activity in L929 cells: low-level radiofrequency radiation does not. Radiat. Environ. Biophys. 45, 231-235. <https://doi.org/10.1007/s00411-006-0053-4>
13. Ivancsits, S., Diem, E., Jahn, O., Rüdiger, H. W. (2003a) Agerelated effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech. Ageing. Dev. 124, 847-850. <https://doi.org/10.1016/S0047-6374(03)00125-8>
14. Ivancsits, S., Diem, E., Jahn, O., Rüdiger, H. W. (2003b) Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int. Arch. Occup. Environ. Health 76, 431-436. <https://doi.org/10.1007/s00420-003-0446-5>
15. Kroupová, j., Bártová, E., Fojt, L., Strašák, L., Kozubek, S., Vetterl, V. (2007) Low-frequency magnetic field effect on cytoskeleton and chromatin. Bioelectrochemistry 70, 96-100. <https://doi.org/10.1016/j.bioelechem.2006.03.034>
16. Kuang, F., Wang, J., Yan, L., Zhang, D. (2007) Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel. Electrochimica Acta 52, 6084-6088. <https://doi.org/10.1016/j.electacta.2007.03.041>
17. Lai, H., Singh, N. P. (1996) Singleand double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. J. Radiat. Biol. 69, 513–521. <https://doi.org/10.1080/095530096145814>
18. Luptáková, A., Kušnierová, M., Fečko, P. (2002) Mineral Biotechnology II. Sulfuretum in Nature and Industry. VŠB-technical University of ostrava, ostrava, pp. 63-69. (in Slovak)
19. Luptáková. A., Kušnierová. M. (2005) Bioremediation of acid mine drainage contaminated by SRB. Hydrometallurgy 77, 97-102. <https://doi.org/10.1016/j.hydromet.2004.10.019>
20. Malyapa, R. S., Ahern, E. W., Bi, C., Straube, W. L., LaRegina, M., Pickard, W. F., Roti Roti, W. F. (1998) DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia. Radiat. Res. 149, 637-645. <https://doi.org/10.2307/3579911>
21. McNamee, J. P., Bellier, P. V., McLean, J. R. N., Marro, L., Gajda, G. B., Thansadote, A. (2002) DNA damage and apoptosis in the immature mouse cerebellum after acute exposure to a 1 mt, 60 Hz magnetic filed. Mutat. Res. 513, 121-133. <https://doi.org/10.1016/S1383-5718(01)00302-3>
22. Melchers, R. E., Wells, T. (2006) Models for the anaerobic phases of marine immersion corrosion. Corrosion Sci. 48, 1791-1811. <https://doi.org/10.1016/j.corsci.2005.05.039>
23. Mullins, J. M., Litovitz, T. A., Penafiel, M., Desta, A., Krause, D. (1998) Intermittent noise affects EMF-induced ODC activity. Bioelectrochem. Bioenerg. 44, 237-242. <https://doi.org/10.1016/S0302-4598(97)00073-1>
24. Novák, J., Strašák, L., Fojt, L., Slaninová, I., Vetterl, V. (2007) Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry 70, 115-121. <https://doi.org/10.1016/j.bioelechem.2006.03.029>
25. Oliver, J. D. (2005) The viable but nonculturable state in bacteria. J. Microbiol. 43, 93-100.
26. Paulraj, R., Behari, J. (2006) Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat. Res. 596, 76-80. <https://doi.org/10.1016/j.mrfmmm.2005.12.006>
27. Rabaey, K., Sompel, K. V., Maignen, L., Boon, N., Aelterman, P., Clauwaert, P., Schamphelaire, L. D., Pham, H. T., Vermeulen, J., Verhaege, M., Lens, P., Verstraete, W. (2006) Microbial fuel cells for sulfide removal. Environ. Sci. Technol. 40, 5218-5224. <https://doi.org/10.1021/es060382u>
28. Repacholi, M. H., Greenebaum, B. (1999) Interaction of static and extremely-low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 20, 133-160. <https://doi.org/10.1002/(SICI)1521-186X(1999)20:3<133::AID-BEM1>3.0.CO;2-O>
29. Ruiz-Gómez, M. J., Prieto-Barcia, M. I., Ristori-Bogajo, E., Martínez-Morillo, M. (2004) Static and 50 Hz magnetic fields of 0.35 and 2.45 mt have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry 64, 151-155. <https://doi.org/10.1016/j.bioelechem.2004.04.003>
30. Strašák, L., Vetterl, V., Šmarda, J. (2002) Effects of low-frequency magnetic fields on the bacteria Escherichia coli. Bioelectrochemistry 55, 161-164. <https://doi.org/10.1016/S1567-5394(01)00152-9>
31. Strašák, L., Vetterl, V., Fojt, L. (2005) Effects of 50 Hz magnetic fields on the viability of different bacterial strains. Electromagn. Biol. Med. 24, 293-300. <https://doi.org/10.1080/15368370500379715>
32. Strašák, L., Bártová, E., Krejčí, J., Fojt, L., Vetterl, V. (2009) Effects of ELF-EMF on brain proteins in mice. Electro­ magn. Biol. Med. 28, 96-104. <https://doi.org/10.1080/15368370802711870>
33. Sul, A. R., Park, S. N., Suh, H. (2006) Effects of sinusoidal electromagnetic field on structure and function of different kinds of cell lines. Yonsei Med. J. 47, 852-861. <https://doi.org/10.3349/ymj.2006.47.6.852>
34. Takayama, K., Ikeda, t., Nagasawa, T. (1996a) Mediated amperometric biosensor for nicotinic acid B based on whole cells of Pseudomonas fluorescens. Electroanalysis 8, 765-768. <https://doi.org/10.1002/elan.1140080811>
35. Takayama, K., Kano, K., Ikeda, T. (1996b) Mediated electrocatalytic reduction of nitrate and nitrite based on the denitrifying activity of Paracoccus denitrificans. Chem. Lett. 11, 1009-1010. <https://doi.org/10.1246/cl.1996.1009>
36. Zagury, G. J., Kulnieks, V. I., Neculita, C. M. (2006) Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Chemosphere 64, 944-954. <https://doi.org/10.1016/j.chemosphere.2006.01.001>
37. Zhao, F., Rahunen, N., Varcoe, J. R., Chandra, A., Avignone-Rossa, C., Thumser, A. E., Slade, R. C. T. (2008) Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci. Technol. 42, 4971-4976. <https://doi.org/10.1021/es8003766>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive