Fol. Biol. 2012, 58, 44-48
https://doi.org/10.14712/fb2012058010044
Electrochemical Evaluation of Extremely-Low Frequency Magnetic Field Effects on Sulphate-Reducing Bacteria
References
1. 2005) The influence of alternating magnetic field on Escherichia coli bacterial cells. Pharm. Chem. J. 39, 398-400.
< , I. V., Borodin, V. B., Smetkova, N. A., Morrison, V. V., Usanov, A. D., Skripal, A.V., Usanov, D. A. (https://doi.org/10.1007/s11094-005-0166-0>
2. 1999) Problems of weak electromagnetic field effects in cell biology. Bioelectrochem. Bioenerg. 48, 355-360.
< , H. (https://doi.org/10.1016/S0302-4598(99)00012-4>
3. 2001) Electromagnetic initiation of transcription at specific DNA sites. J. Cell. Biochem. 81, 689-692.
< , M., Goodmann, R. (https://doi.org/10.1002/jcb.1102>
4. 1994) Combined magnetic fields increased net calcium flux in bone cells. Calcif. Tissue Int. 55, 376-380.
< , R. J., Ryaby, J. T., Magee, F. P., Baylink, D. J. (https://doi.org/10.1007/BF00299318>
5. 2004) Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry 63, 337-341.
< , L., Strašák, L., Vetterl, V., Šmarda, J. (https://doi.org/10.1016/j.bioelechem.2003.11.010>
6. 2006) Sensitive determination of oligodeoxynucleotides by anodic adsorptive stripping voltammetry at surface-roughened glassy carbon electrode in the presence of copper. J. Electroanal. Chem. 586, 136-143.
< , L., Hasoň, S. (https://doi.org/10.1016/j.jelechem.2005.07.027>
7. 2007) Effect of electromagnetic fields on the denitrification activity of Paracoccus denitrificans. Bioelectrochemistry 70, 91-95.
< , L., Strašák, L., Vetterl, V. (https://doi.org/10.1016/j.bioelechem.2006.03.023>
8. 2009) 50 Hz magnetic field effect on the morphology of bacteria. Micron 40, 918-922.
< , L., Klapetek, P., Strašák, L., Vetterl, V. (https://doi.org/10.1016/j.micron.2009.06.009>
9. 2010) Extremely-low frequency magnetic field effects on sulfate reducing bacteria viability. Electromagn. Biol. Med. 29, 177-185.
< , L., Strašák, L., Vetterl, V. (https://doi.org/10.3109/15368378.2010.513304>
10. 2004) Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 354, 307-315.
< , C., D’Ascenzo, M., Torsello, A., Martinotti, G., Wolf, F., Cittadini, A., Azzena, G. B. (https://doi.org/10.1016/j.ceca.2003.09.001>
11. 2006) Chromatid damage in human lymphocytes is not affected by 50 Hz electromagnetic fields. Radiat. Prot. Dosim. 121, 321-324.
< , P., Lloyd, D., Szluinska, M., Edwards, A. (https://doi.org/10.1093/rpd/ncl035>
12. 2006) Modest increase in temperature affects ODC activity in L929 cells: low-level radiofrequency radiation does not. Radiat. Environ. Biophys. 45, 231-235.
< , A., Sihvonen, A. P., Alhonen, L., Juutilainen, J., Naarala, J. (https://doi.org/10.1007/s00411-006-0053-4>
13. 2003a) Agerelated effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech. Ageing. Dev. 124, 847-850.
< , S., Diem, E., Jahn, O., Rüdiger, H. W. (https://doi.org/10.1016/S0047-6374(03)00125-8>
14. 2003b) Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int. Arch. Occup. Environ. Health 76, 431-436.
< , S., Diem, E., Jahn, O., Rüdiger, H. W. (https://doi.org/10.1007/s00420-003-0446-5>
15. 2007) Low-frequency magnetic field effect on cytoskeleton and chromatin. Bioelectrochemistry 70, 96-100.
< , j., Bártová, E., Fojt, L., Strašák, L., Kozubek, S., Vetterl, V. (https://doi.org/10.1016/j.bioelechem.2006.03.034>
16. 2007) Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel. Electrochimica Acta 52, 6084-6088.
< , F., Wang, J., Yan, L., Zhang, D. (https://doi.org/10.1016/j.electacta.2007.03.041>
17. 1996) Singleand double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. J. Radiat. Biol. 69, 513–521.
< , H., Singh, N. P. (https://doi.org/10.1080/095530096145814>
18. Luptáková, A., Kušnierová, M., Fečko, P. (2002) Mineral Biotechnology II. Sulfuretum in Nature and Industry. VŠB-technical University of ostrava, ostrava, pp. 63-69. (in Slovak)
19. 2005) Bioremediation of acid mine drainage contaminated by SRB. Hydrometallurgy 77, 97-102.
< A., Kušnierová. M. (https://doi.org/10.1016/j.hydromet.2004.10.019>
20. 1998) DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia. Radiat. Res. 149, 637-645.
< , R. S., Ahern, E. W., Bi, C., Straube, W. L., LaRegina, M., Pickard, W. F., Roti Roti, W. F. (https://doi.org/10.2307/3579911>
21. 2002) DNA damage and apoptosis in the immature mouse cerebellum after acute exposure to a 1 mt, 60 Hz magnetic filed. Mutat. Res. 513, 121-133.
< , J. P., Bellier, P. V., McLean, J. R. N., Marro, L., Gajda, G. B., Thansadote, A. (https://doi.org/10.1016/S1383-5718(01)00302-3>
22. 2006) Models for the anaerobic phases of marine immersion corrosion. Corrosion Sci. 48, 1791-1811.
< , R. E., Wells, T. (https://doi.org/10.1016/j.corsci.2005.05.039>
23. 1998) Intermittent noise affects EMF-induced ODC activity. Bioelectrochem. Bioenerg. 44, 237-242.
< , J. M., Litovitz, T. A., Penafiel, M., Desta, A., Krause, D. (https://doi.org/10.1016/S0302-4598(97)00073-1>
24. 2007) Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry 70, 115-121.
< , J., Strašák, L., Fojt, L., Slaninová, I., Vetterl, V. (https://doi.org/10.1016/j.bioelechem.2006.03.029>
25. 2005) The viable but nonculturable state in bacteria. J. Microbiol. 43, 93-100.
, J. D. (
26. 2006) Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat. Res. 596, 76-80.
< , R., Behari, J. (https://doi.org/10.1016/j.mrfmmm.2005.12.006>
27. 2006) Microbial fuel cells for sulfide removal. Environ. Sci. Technol. 40, 5218-5224.
< , K., Sompel, K. V., Maignen, L., Boon, N., Aelterman, P., Clauwaert, P., Schamphelaire, L. D., Pham, H. T., Vermeulen, J., Verhaege, M., Lens, P., Verstraete, W. (https://doi.org/10.1021/es060382u>
28. 1999) Interaction of static and extremely-low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 20, 133-160.
< , M. H., Greenebaum, B. (https://doi.org/10.1002/(SICI)1521-186X(1999)20:3<133::AID-BEM1>3.0.CO;2-O>
29. 2004) Static and 50 Hz magnetic fields of 0.35 and 2.45 mt have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry 64, 151-155.
< , M. J., Prieto-Barcia, M. I., Ristori-Bogajo, E., Martínez-Morillo, M. (https://doi.org/10.1016/j.bioelechem.2004.04.003>
30. 2002) Effects of low-frequency magnetic fields on the bacteria Escherichia coli. Bioelectrochemistry 55, 161-164.
< , L., Vetterl, V., Šmarda, J. (https://doi.org/10.1016/S1567-5394(01)00152-9>
31. 2005) Effects of 50 Hz magnetic fields on the viability of different bacterial strains. Electromagn. Biol. Med. 24, 293-300.
< , L., Vetterl, V., Fojt, L. (https://doi.org/10.1080/15368370500379715>
32. 2009) Effects of ELF-EMF on brain proteins in mice. Electro magn. Biol. Med. 28, 96-104.
< , L., Bártová, E., Krejčí, J., Fojt, L., Vetterl, V. (https://doi.org/10.1080/15368370802711870>
33. 2006) Effects of sinusoidal electromagnetic field on structure and function of different kinds of cell lines. Yonsei Med. J. 47, 852-861.
< , A. R., Park, S. N., Suh, H. (https://doi.org/10.3349/ymj.2006.47.6.852>
34. 1996a) Mediated amperometric biosensor for nicotinic acid B based on whole cells of Pseudomonas fluorescens. Electroanalysis 8, 765-768.
< , K., Ikeda, t., Nagasawa, T. (https://doi.org/10.1002/elan.1140080811>
35. 1996b) Mediated electrocatalytic reduction of nitrate and nitrite based on the denitrifying activity of Paracoccus denitrificans. Chem. Lett. 11, 1009-1010.
< , K., Kano, K., Ikeda, T. (https://doi.org/10.1246/cl.1996.1009>
36. 2006) Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Chemosphere 64, 944-954.
< , G. J., Kulnieks, V. I., Neculita, C. M. (https://doi.org/10.1016/j.chemosphere.2006.01.001>
37. 2008) Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci. Technol. 42, 4971-4976.
< , F., Rahunen, N., Varcoe, J. R., Chandra, A., Avignone-Rossa, C., Thumser, A. E., Slade, R. C. T. (https://doi.org/10.1021/es8003766>