Fol. Biol. 2012, 58, 106-114
https://doi.org/10.14712/fb2012058030106
Xenogeneic Protein-Free Cultivation of Mesenchymal Stromal Cells – Towards Clinical Applications
References
1. 2009) The use of mesenchymal (skeletal) stem cells for treatment of degenerative diseases: current status and future perspectives. J. Cell. Physiol. 218, 9-12.
< , B. M., Kassem, M. (https://doi.org/10.1002/jcp.21572>
2. 1997) A homologue of the TnF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175-179.
< , D. M., Maraskovsky, E., Billingsley, W. L., Dougall, W. C., Tometsko, M. E., Roux, E. R., Teepe, M. C., DuBose, R. F., Cosman, D., Galibert, L. (https://doi.org/10.1038/36593>
3. 2003) Subcellular distribution and mitogenic effect of basic fibroblast growth factor in mesenchymal uncommitted stem cells. Growth Factors 21, 87-94.
< , C. A., Sierralta, W. D., Conget, P. A., Minguell, J. J. (https://doi.org/10.1080/08977190310001613789>
4. 1989) Autologous marrow injection for delayed unions of the tibia: a preliminary report. J. Orthop. Trauma 3, 276-282.
< , J. F., Guse, R., Tiedeman, J., Dehne, R. (https://doi.org/10.1097/00005131-198912000-00002>
5. 1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6, 230-247.
< , A. J., Petrakova, K. V., Kurolesova, A. I., Frolova, G. P. (https://doi.org/10.1097/00007890-196803000-00009>
6. 2008) Quantitative analysis of the responses of murine bone marrow mesenchymal stem cells to eGF, pDGF-BB and fibronectin by factorial design methodology. Cytotechnology 58, 93-101.
< , T., Sun, H., Luo, F., Qi, N. (https://doi.org/10.1007/s10616-008-9172-x>
7. 2008) Differentiating human multipotent mesenchymal stromal cells regulate micrornAs: prediction of micrornA regulation by pDGF during osteogenesis. Exp. Hematol. 36, 1354-1369.
< , L. A., Boucher, S., Ricupero, C. L., Fenstermacher, S., Swerdel, M., Chase, L. G., Adams, C. C., Chesnut, J., Lakshmipathy, U., Hart, R. P. (https://doi.org/10.1016/j.exphem.2008.05.004>
8. 1995) The growth factor requirements of StRo-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. Blood 85, 929-940.
< , S., Simmons, P. J. (https://doi.org/10.1182/blood.V85.4.929.bloodjournal854929>
9. 2006) FDA regulation of stemcell-based therapies. N. Engl. J. Med. 355, 1730-1735.
< , D. G., Kessler, D. A. (https://doi.org/10.1056/NEJMhpr063086>
10. 2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J. Bone Joint Surg. Am. 87, 1430-1437.
, P., Poignard, A., Beaujean, F., Rouard, H. (
11. 2004) Homing efficiency and hematopoietic reconstitution of bone marrow-derived stroma cells expanded by recombinant human macrophage-colony stimulating factor in vitro. Exp. Hematol. 32, 1204-1211.
< , F., Xiaofeng, S., Jun-Chuan, Q., Yan, G., Xue-Guang, Z. (https://doi.org/10.1016/j.exphem.2004.08.005>
12. 2006) Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artif. Organs 30, 960-962.
< , K., Yajima, H., Ohgushi, H., Kotobuki, N., Sugimoto, K., Ohmura, T., Kobata, Y., Shigematsu, K., Kawamura, K., Tamai, K., Takakura, Y. (https://doi.org/10.1111/j.1525-1594.2006.00333.x>
13. 2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J. Clin. Oncol. 18, 307-316.
< , O. N., Gerson, S. L., Cooper, B. W., Dyhouse, S. M., Haynesworth, S. E., Caplan, A. I., Lazarus, H. M. (https://doi.org/10.1200/JCO.2000.18.2.307>
14. 2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308, 1472-1477.
< , I., Blagoev, B., Haack-Sorensen, M., Kassem, M., Mann, M. (https://doi.org/10.1126/science.1107627>
15. 2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363, 1439-1441.
< , K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M., Ringden, O. (https://doi.org/10.1016/S0140-6736(04)16104-7>
16. 2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versushost disease: a phase ii study. Lancet 371, 1579-1586.
< , K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis, I., Lanino, E., Sundberg, B., Bernardo, M. E., Remberger, M., Dini, G., Egeler, R. M., Bacigalupo, A., Fibbe, W., Ringden, O. (https://doi.org/10.1016/S0140-6736(08)60690-X>
17. 2008) Controversial issue: is it safe to employ mesenchymal stem cells in cell-based therapies? Exp. Gerontol. 43, 1018-1023.
< , G., Brunauer, R., Jamnig, A., Laschober, G., Kassem, M. (https://doi.org/10.1016/j.exger.2008.07.004>
18. 2007) Glucocorticoids in the regulation of transcription factors that control cytokine synthesis. Cytokine Growth Factor Rev. 18, 45-56.
< , A. C., Druker, J., Perone, M. J., Arzt, E. (https://doi.org/10.1016/j.cytogfr.2007.01.005>
19. 2006) Biocompatibility of poly-DL-lactic acid (PDllA) for lung tissue engineering. J. Biomater. Appl. 21, 109-118.
< , Y. M., Boccaccini, A. R., Polak, J. M., Bishop, A. E., Maquet, V. (https://doi.org/10.1177/0885328206057952>
20. 2007) Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 25, 1603-1609.
< , F., Tonti, G. A. (https://doi.org/10.1634/stemcells.2007-0127>
21. 1997) Identification of a Trypanosoma cruzi antigenic epitope implicated in the infectivity of fibroblast LLCMk2 cells. Parasitol. Res. 83, 226-232.
, F., Puertas, C., Thomas, M. C., Maranon, C., Patarroyo, M. E., Martin, J., Alonso, C., Lopez, M. C. (
22. 2008) pDGF, TGF-β, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112, 295-307.
< , F., Boucher, S., Koh, S., Sastry, K. S., Chase, L., Lakshmipathy, U., Choong, C., Yang, Z., Vemuri, M. C., Rao, M. S., Tanavde, V. (https://doi.org/10.1182/blood-2007-07-103697>
23. 2009) Phenotypic and functional comparison of optimum culture conditions for upscaling of bone marrow-derived mesenchymal stem cells. J. Tissue Eng. Regen. Med. 3, 163-174.
< , R., Hanwate, M., Jan, M., Totey, S. (https://doi.org/10.1002/term.143>
24. 2004) Sustained in vitro expansion of bone progenitors is cell density dependent. Stem Cells 22, 39-50.
< , K. A., Aubin, J. E., Zandstra, P. W. (https://doi.org/10.1634/stemcells.22-1-39>
25. 2005) Growth and differentiation of mesenchymal stem cells in human sera. Bone Marrow Transplant. 35, S77-S78.
, R., Purkrabkova, T., Stehlik, D., Hofman, P., Cervinkova, P., Obrtlikova, P., Zima, T., Trneny, M. (
26. 2009) the cultivation of human multipotent mesenchymal stromal cells in clinical grade medium for bone tissue engineering. Biomaterials 30, 3415-3427.
< , R., Stehlik, D., Soukup, T., Kalbacova, M., Rypacek, F., Trc, T., Mulinkova, K., Michnova, P., Kideryova, L., Zivny, J., Klener, P., Jr., Vesela, R., Trneny, M., Klener, P. (https://doi.org/10.1016/j.biomaterials.2009.03.001>
27. 1994) Platelet-derived growth factor-AA and -BB (PDGF-AA and -BB) enhance the synthesis of PDGF-AA in bone cell cultures. Endocrinology 134, 2541-2546.
< , S., Shaikh, S., Canalis, E. (https://doi.org/10.1210/endo.134.6.8194480>
28. 2006) Collagen synthesis is required for ascorbic acid-enhanced differentiation of mouse embryonic stem cells into cardiomyocytes. Biochem. Biophys. Res. Commun. 342, 107-112.
< , H., Takahashi, M., Ise, H., Yamada, A., Hirose, S., Tagawa, Y., Morimoto, H., Izawa, A., Ikeda, U. (https://doi.org/10.1016/j.bbrc.2006.01.116>
29. 1991) Synthesis and platelet aggregation inhibitory activity of diphenylazole derivatives. i. thiazole and imidazole derivatives. Chem. Pharm. Bull. (Tokyo) 39, 651-657.
< , N., Yoshino, K., Yokota, K., Tsukamoto, G. (https://doi.org/10.1248/cpb.39.651>
30. 2005) FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J. Cell. Physiol. 203, 398-409.
< , L. A., Penick, K., Porter, J. D., Goldberg, V. M., Caplan, A. I., Welter, J. F. (https://doi.org/10.1002/jcp.20238>
31. 2010) epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. J. Biomed. Biotechnol. 2010, 795385.
< , K., Kawasaki, H., Wells, A. (https://doi.org/10.1155/2010/795385>
32. 2008) From bone marrow to therapeutic applications: different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera? Int. J. Dev. Biol. 52, 1023-1032.
< , G. A., Mannello, F. (https://doi.org/10.1387/ijdb.082725gt>
33. 2006) BMp2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat. Genet. 38, 1424-1429.
< , K., Bandyopadhyay, A., Harfe, B. D., Cox, K., Kakar, S., Gerstenfeld, L., Einhorn, T., Tabin, C. J., Rosen, V. (https://doi.org/10.1038/ng1916>
34. 2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem. Biophys. Res. Commun. 288, 413-419.
< , S., Shimazu, A., Miyazaki, k., Pan, h., koike, C., yoshida, E., takagishi, k., kato, y. (https://doi.org/10.1006/bbrc.2001.5777>
35. 2008) Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum. Mol. Genet. 17(r1), r48-53.
< , C., Skottman, H., Blomberg, P., Dilber, M. S., Hovatta, O. (https://doi.org/10.1093/hmg/ddn079>
36. 2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3, e2213.
< , W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V., Ho, A. D. (https://doi.org/10.1371/journal.pone.0002213>
37. 2008) Skin penetration and retention of L-ascorbic acid 2-phosphate using multilamellar vesicles. Arch. Pharm. Res. 31, 1652-1658.
< , J., Shanmugam, S., Song, C. K., Kim, D. D., Choi, H. G., Yong, C. S., Woo, J. S., Yoo, B. K. (https://doi.org/10.1007/s12272-001-2164-4>
38. 1990) the murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442-444.
< , H., Hayashi, S., Kunisada, T., Ogawa, M., Nishikawa, S., Okamura, H., Sudo, T., Shultz, L. D. (https://doi.org/10.1038/345442a0>
39. 2010) Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair. Bone 46, 841-851.
< , Y. Y., Lieu, S., Lu, C., Miclau, T., Marcucio, R. S., Colnot, C. (https://doi.org/10.1016/j.bone.2009.11.005>