Fol. Biol. 2012, 58, 128-133

https://doi.org/10.14712/fb2012058030128

Limitations of Macroscopic Fluorescence Imaging for the Estimation of Tumour Growth in an Orthotopic Glioma Mouse Model

M. Hilšer, J. Trylčová, P. Bušek, Aleksi Šedo

Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, Czech Republic

Received September 2011
Accepted January 2012

References

1. Antunes, L., Angioi-Duprez, K. S., Bracard, S. R., KleinMonhoven, N. A., Le Faou, A. E., Duprez, A. M., Plénat, F. M. (2000) Analysis of tissue chimerism in nude mouse brain and abdominal xenograft models of human glioblastoma multiforme: what does it tell us about the models and about glioblastoma biology and therapy? J. Histochem. Cytochem. 48, 847-858. <https://doi.org/10.1177/002215540004800613>
2. Barth, R. F., Kaur, B. (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J. Neurooncol. 94, 299-312. <https://doi.org/10.1007/s11060-009-9875-7>
3. Busek, P., Stremenova, J., Sedo, A. (2008) Dipeptidyl peptidase-IV enzymatic activity bearing molecules in human brain tumors – good or evil? Front. Biosci. 13, 2319-2326. <https://doi.org/10.2741/2846>
4. Deliolanis, N. C., Kasmieh, R., Würdinger, T., Tannous, B. A., Shah, K., Ntziachristos, V. (2008) Performance of the redshifted fluorescent proteins in deep tissue molecular imaging applications. J. Biomed. Opt. 13, 044008. <https://doi.org/10.1117/1.2967184>
5. Dinca, E. B., Sarkaria, J. N., Schroeder, M. A., Carlson, B. L., Voicu, R., Gupta, N., Berger, M. S., James, C.D. (2007) Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. J. Neurosurg. 107, 610-616. <https://doi.org/10.3171/JNS-07/09/0610>
6. Dong, Z., Radinsky, R., Fan, D., Tsan, R., Bucana, C. D., Wilmanns, C., Fidler, I. J. (1994) Organ-specific modulation of steady-state mdr gene expression and drug resistance in murine colon cancer models. J. Natl. Cancer Inst. 86, 913-920. <https://doi.org/10.1093/jnci/86.12.913>
7. Fidler, I. J., Wilmanns, C., Staroselsky, A., Radinsky, R., Dong, Z., Fan, D. (1994) Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev. 13, 209-222. <https://doi.org/10.1007/BF00689637>
8. Hashizume, R., Ozawa, T., Dinca, E. B., Banerjee, A., Prados, M. D., James, C. D., Gupta, N. (2010) A human brainstem glioma xenograft model enabled for bioluminescence imaging. J. Neurooncol. 96, 151-159. <https://doi.org/10.1007/s11060-009-9954-9>
9. Hoffman, R. M. (2008) A better fluorescent protein for wholebody imaging. Trends Biotechnol. 26, 1-4. <https://doi.org/10.1016/j.tibtech.2007.10.006>
10. Jost, S. C., Wanebo, J. E., Song, S. K., Chicoine, M. R., Rich, K. M., Woolsey, T. A., Lewis, J. S., Mach, R. H., Xu, J., Garbow, J. R. (2007) In vivo imaging in a murine model of glioblastoma. Neurosurgery 60, 360-370; discussion 370371. <https://doi.org/10.1227/01.NEU.0000249264.80579.37>
11. Killion, J. J., Radinsky, R., Fidler, I. J. (1998) Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev. 17, 279-284. <https://doi.org/10.1023/A:1006140513233>
12. Kobayashi, N., Allen, N., Clendenon, N. R., Ko, L. W. (1980) An improved rat brain-tumor model. J. Neurosurg. 53, 808-815. <https://doi.org/10.3171/jns.1980.53.6.0808>
13. Mayhew, T. M., Olsen, D. R. (1991) Magnetic resonance imaging (MRI) and model-free estimates of brain volume determined using the Cavalieri principle. J. Anat. 178, 133-144.
14. Mook, O. R., Jonker, A., Strang, A. C., Veltien, A., Gambarota, G., Frederiks, W. M., Heerschap, A., Van Noorden, C. J. F. (2008) Noninvasive magnetic resonance imaging of the development of individual colon cancer tumors in rat liver. BioTechniques 44, 529-535. <https://doi.org/10.2144/000112695>
15. Ntziachristos V. (2006) Fluorescence molecular imaging. Annu. Rev. Biomed. Eng. 8, 1-33. <https://doi.org/10.1146/annurev.bioeng.8.061505.095831>
16. Shcherbo, D., Merzlyak, E. M., Chepurnykh, T. V., Fradkov, A. F., Ermakova, G. V., Solovieva, E. A., Lukyanov, K. A., Bogdanova, E. A., Zaraisky, A. G., Lukyanov, S., Chudakov, D. M. (2007) Bright far-red fluorescent protein for whole-body imaging. Nat. Methods 4, 741-746. <https://doi.org/10.1038/nmeth1083>
17. Shcherbo, D., Murphy, C. S., Ermakova, G. V., Solovieva, E. A., Chepurnykh, T. V., Shcheglov, A. S., Verkhusha, V. V., Pletnev, V. Z., Hazelwood, K. L., Roche, P. M., Lukyanov, S., Zaraisky, A. G., Davidson, M. W., Chudakov, D. M. (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 418, 567-572. <https://doi.org/10.1042/BJ20081949>
18. Szentirmai, O., Baker, C. H., Lin, N., Szucs, S., Takahashi, M., Kiryu, S., Kung, A. L., Mulligan, R.C., Carter, B. S. (2006) Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: Correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect. Neurosurgery 58, 365-372. <https://doi.org/10.1227/01.NEU.0000195114.24819.4F>
19. Troy, T., Jekic-McMullen, D., Sambucetti, L., Rice, B. (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imaging 3, 9-23. <https://doi.org/10.1162/153535004773861688>
20. Tung, C. H., Zeng, Q., Shah, K., Kim, D. E., Schellingerhout, D., Weissleder, R. (2004) In vivo imaging of β-galactosidase activity using far red fluorescent switch. Cancer Res. 64, 1579-1583. <https://doi.org/10.1158/0008-5472.CAN-03-3226>
21. Yang, H., Chopp, M., Zhang, X., Jiang, F., Zhang, Z., Kalkanis, S., Schallert, T. (2007) Using behavioral measurement to assess tumor progression and functional outcome after antiangiogenic treatment in mouse glioma models. Behav. Brain Res. 182, 42-50. <https://doi.org/10.1016/j.bbr.2007.05.013>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive