Fol. Biol. 2012, 58, 128-133
https://doi.org/10.14712/fb2012058030128
Limitations of Macroscopic Fluorescence Imaging for the Estimation of Tumour Growth in an Orthotopic Glioma Mouse Model
References
1. , L., Angioi-Duprez, K. S., Bracard, S. R., KleinMonhoven, N. A., Le Faou, A. E., Duprez, A. M., Plénat, F. M. (2000) Analysis of tissue chimerism in nude mouse brain and abdominal xenograft models of human glioblastoma multiforme: what does it tell us about the models and about glioblastoma biology and therapy? J. Histochem. Cytochem. 48, 847-858.
<https://doi.org/10.1177/002215540004800613>
2. , R. F., Kaur, B. (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J. Neurooncol. 94, 299-312.
<https://doi.org/10.1007/s11060-009-9875-7>
3. , P., Stremenova, J., Sedo, A. (2008) Dipeptidyl peptidase-IV enzymatic activity bearing molecules in human brain tumors – good or evil? Front. Biosci. 13, 2319-2326.
<https://doi.org/10.2741/2846>
4. , N. C., Kasmieh, R., Würdinger, T., Tannous, B. A., Shah, K., Ntziachristos, V. (2008) Performance of the redshifted fluorescent proteins in deep tissue molecular imaging applications. J. Biomed. Opt. 13, 044008.
<https://doi.org/10.1117/1.2967184>
5. , E. B., Sarkaria, J. N., Schroeder, M. A., Carlson, B. L., Voicu, R., Gupta, N., Berger, M. S., James, C.D. (2007) Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. J. Neurosurg. 107, 610-616.
<https://doi.org/10.3171/JNS-07/09/0610>
6. , Z., Radinsky, R., Fan, D., Tsan, R., Bucana, C. D., Wilmanns, C., Fidler, I. J. (1994) Organ-specific modulation of steady-state mdr gene expression and drug resistance in murine colon cancer models. J. Natl. Cancer Inst. 86, 913-920.
<https://doi.org/10.1093/jnci/86.12.913>
7. , I. J., Wilmanns, C., Staroselsky, A., Radinsky, R., Dong, Z., Fan, D. (1994) Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev. 13, 209-222.
<https://doi.org/10.1007/BF00689637>
8. , R., Ozawa, T., Dinca, E. B., Banerjee, A., Prados, M. D., James, C. D., Gupta, N. (2010) A human brainstem glioma xenograft model enabled for bioluminescence imaging. J. Neurooncol. 96, 151-159.
<https://doi.org/10.1007/s11060-009-9954-9>
9. , R. M. (2008) A better fluorescent protein for wholebody imaging. Trends Biotechnol. 26, 1-4.
<https://doi.org/10.1016/j.tibtech.2007.10.006>
10. , S. C., Wanebo, J. E., Song, S. K., Chicoine, M. R., Rich, K. M., Woolsey, T. A., Lewis, J. S., Mach, R. H., Xu, J., Garbow, J. R. (2007) In vivo imaging in a murine model of glioblastoma. Neurosurgery 60, 360-370; discussion 370371.
<https://doi.org/10.1227/01.NEU.0000249264.80579.37>
11. , J. J., Radinsky, R., Fidler, I. J. (1998) Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev. 17, 279-284.
<https://doi.org/10.1023/A:1006140513233>
12. , N., Allen, N., Clendenon, N. R., Ko, L. W. (1980) An improved rat brain-tumor model. J. Neurosurg. 53, 808-815.
<https://doi.org/10.3171/jns.1980.53.6.0808>
13. , T. M., Olsen, D. R. (1991) Magnetic resonance imaging (MRI) and model-free estimates of brain volume determined using the Cavalieri principle. J. Anat. 178, 133-144.
14. , O. R., Jonker, A., Strang, A. C., Veltien, A., Gambarota, G., Frederiks, W. M., Heerschap, A., Van Noorden, C. J. F. (2008) Noninvasive magnetic resonance imaging of the development of individual colon cancer tumors in rat liver. BioTechniques 44, 529-535.
<https://doi.org/10.2144/000112695>
15. V. (2006) Fluorescence molecular imaging. Annu. Rev. Biomed. Eng. 8, 1-33.
<https://doi.org/10.1146/annurev.bioeng.8.061505.095831>
16. , D., Merzlyak, E. M., Chepurnykh, T. V., Fradkov, A. F., Ermakova, G. V., Solovieva, E. A., Lukyanov, K. A., Bogdanova, E. A., Zaraisky, A. G., Lukyanov, S., Chudakov, D. M. (2007) Bright far-red fluorescent protein for whole-body imaging. Nat. Methods 4, 741-746.
<https://doi.org/10.1038/nmeth1083>
17. , D., Murphy, C. S., Ermakova, G. V., Solovieva, E. A., Chepurnykh, T. V., Shcheglov, A. S., Verkhusha, V. V., Pletnev, V. Z., Hazelwood, K. L., Roche, P. M., Lukyanov, S., Zaraisky, A. G., Davidson, M. W., Chudakov, D. M. (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 418, 567-572.
<https://doi.org/10.1042/BJ20081949>
18. , O., Baker, C. H., Lin, N., Szucs, S., Takahashi, M., Kiryu, S., Kung, A. L., Mulligan, R.C., Carter, B. S. (2006) Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: Correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect. Neurosurgery 58, 365-372.
<https://doi.org/10.1227/01.NEU.0000195114.24819.4F>
19. , T., Jekic-McMullen, D., Sambucetti, L., Rice, B. (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imaging 3, 9-23.
<https://doi.org/10.1162/153535004773861688>
20. , C. H., Zeng, Q., Shah, K., Kim, D. E., Schellingerhout, D., Weissleder, R. (2004) In vivo imaging of β-galactosidase activity using far red fluorescent switch. Cancer Res. 64, 1579-1583.
<https://doi.org/10.1158/0008-5472.CAN-03-3226>
21. , H., Chopp, M., Zhang, X., Jiang, F., Zhang, Z., Kalkanis, S., Schallert, T. (2007) Using behavioral measurement to assess tumor progression and functional outcome after antiangiogenic treatment in mouse glioma models. Behav. Brain Res. 182, 42-50.
<https://doi.org/10.1016/j.bbr.2007.05.013>
