Fol. Biol. 2012, 58, 177-184
https://doi.org/10.14712/fb2012058050177
Dynamics and Morphology of Focal Adhesions in Complex 3D Environment
References
1. 1971) The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp. Cell Res. 67, 359-367.
< , M., Heaysman, J. E., Pegrum, S. M. (https://doi.org/10.1016/0014-4827(71)90420-4>
2. 2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3, 466-472.
< , N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L., Geiger, B. (https://doi.org/10.1038/35074532>
3. 2008) Podosome-type adhesions and focal adhesions, so alike yet so different. Eur. J. Cell Biol. 87, 491-506.
< , M. R., Badowski, C., Millon‐Fremillon, A., Bouvard, D., Bouin, A. P., Faurobert, E., Gerber‐Scokaert, D., Planus, E., Albiges-Rizo, C. (https://doi.org/10.1016/j.ejcb.2008.02.012>
4. 2010) The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Commun. Signal. 8, 22.
< , J., Mierke, C. T., Rosel, D., Vesely, P., Fabry, B. (https://doi.org/10.1186/1478-811X-8-22>
5. 2003) Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307, 355-361.
< , C. S., Alonso, J. L., Ostuni, E., Whitesides, G. M., Ingber, D. E. (https://doi.org/10.1016/S0006-291X(03)01165-3>
6. 2003) Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3, 921-930.
< , J., Segall, J. E. (https://doi.org/10.1038/nrc1231>
7. 2001) Taking cell-matrix adhesions to the third dimension. Science 294, 1708-1712.
< , E., Pankov, R., Stevens, D. R., Yamada, K. M. (https://doi.org/10.1126/science.1064829>
8. 2011) Distinct roles for paxillin and Hic‐5 in regulating breast cancer cell morphology, invasion, and metastasis. Mol. Biol. Cell 22, 327-341.
< , N. O., Turner, C. E. (https://doi.org/10.1091/mbc.e10-09-0790>
9. 2010) Dynamic interplay between the collagen scaffold and tumor evolution. Curr. Opin. Cell Biol. 22, 697-706.
< , M., Rasch, M. G., Weaver, V. M. (https://doi.org/10.1016/j.ceb.2010.08.015>
10. 2010) A distinctive role for focal adhesion proteins in three‐dimensional cell motility. Nat. Cell Biol. 12, 598-604.
< , S. I., Feng, Y., Krishnamurthy, R., Kim, D. H., Celedon, A., Longmore, G. D., Wirtz, D. (https://doi.org/10.1038/ncb2062>
11. 2011) Reply: reducing background fluorescence reveals adhesions in 3D matrices. Nat. Cell Biol. 13, 5-7.
< , S. I., Feng, Y., Wirtz, D., Longmore, G. D. (https://doi.org/10.1038/ncb0111-5>
12. 2001) Transmembrane crosstalk between the extracellular matrix- cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2, 793-805.
< , B., Bershadsky, A., Pankov, R., Yamada, K. M. (https://doi.org/10.1038/35099066>
13. 2009) Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21-33.
< , B., Spatz, J. P., Bershadsky, A. D. (https://doi.org/10.1038/nrm2593>
14. 2011) Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng. Part A 17, 713-724.
< , K. M., Harunaga, J. S., Doyle, A. D., Yamada, K. M. (https://doi.org/10.1089/ten.tea.2010.0273>
15. 2011) Cell-matrix adhesions in 3D. Matrix Biol. 30, 363-368.
< , J. S., Yamada, K. M. (https://doi.org/10.1016/j.matbio.2011.06.001>
16. 2010) The retention of extracellular matrix proteins and angiogenic and mitogenic cytokines in a decellularized porcine dermis. Biomaterials 31, 6730-6737.
< , D. M., O’Doherty, E. M., Owens, G. E., Harilal, D. O., Goldman, S. M., Bowley, C. M., Neville, C. M., Kronengold, R. T., Vacanti, J. P. (https://doi.org/10.1016/j.biomaterials.2010.05.019>
17. 2011) Reducing background fluorescence reveals adhesions in 3D matrices. Nat. Cell Biol., 13, 3-5.
< , K. E., Horwitz, A. R. (https://doi.org/10.1038/ncb0111-3>
18. 2009) Genetic and cell biological analysis of integrin outside‐in signaling. Genes Dev. 23, 397-418.
< , K. R., Wickstrom, S. A., Fassler, R. (https://doi.org/10.1101/gad.1758709>
19. 2003) Genomic analysis of smooth muscle cells in 3-dimensional collagen matrix. FASEB J. 17, 97-99.
< , S., Lao, J., Chen, B. P., Li, Y. S., Zhao, Y., Chu, J., Chen, K. D., Tsou, T. C., Peck, K., Chien, S. (https://doi.org/10.1096/fj.02-0256fje>
20. 2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633-643.
< , J. T., Horwitz, A. R., Schwartz, M. A. (https://doi.org/10.1038/nrm2957>
21. 2003) Direct correlation of collagen matrix deformation with focal adhesion dynamics in living corneal fibroblasts. J. Cell Sci. 116, 1481-1491.
< , W. M., Ma, L., Jester, J. V. (https://doi.org/10.1242/jcs.00357>
22. 2007) Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys. J. 92, 2212-2222.
< , C. B., Suresh, V., Krasieva, T., Lyubovitsky, J., Mih, J. D., Putnam, A. J., Tromberg, B. J., George, S. C. (https://doi.org/10.1529/biophysj.106.097998>
23. 2009) Protease- dependent versus ‐independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J. Cell Biol. 185, 11-19.
< , F., Shimizu-Hirota, R., Weiss, S. J. (https://doi.org/10.1083/jcb.200807195>
24. 2002) Modulation of fibroblast morphology and adhesion during collagen matrix remodeling. Mol. Biol. Cell 13, 3915-3929.
< , E., Grinnell, F. (https://doi.org/10.1091/mbc.e02-05-0291>
25. 2010) The structure of invadopodia in a complex 3D environment. Eur. J. Cell Biol. 89, 674-680.
< , O., Rosel, D., Vesely, P., Folk, P., Brabek, J. (https://doi.org/10.1016/j.ejcb.2010.04.003>
26. 2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69, 4167-4174.
< , T. A., Juan Pardo, E. M., Kumar, S. (https://doi.org/10.1158/0008-5472.CAN-08-4859>
27. 2007) RACK1 targets the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway to link integrin engagement with focal adhesion disassembly and cell motility. Mol. Cell Biol. 27, 8296-8305.
< , T., Iwanicki, M. P., Schaeffer, H. J., Tarcsafalvi, A., Parsons, J. T., Weber, M. J. (https://doi.org/10.1128/MCB.00598-07>
28. 2002) Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 62, 6278-6288.
, W., Wyckoff, J. B., Frohlich, V. C., Oleynikov, Y., Huttelmaier, S., Zavadil, J., Cermak, L., Bottinger, E. P., Singer, R. H., White, J. G., Segall, J. E., Condeelis, J. S. (
29. 2004) FAK- Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell Biol. 6, 154-161.
< , D. J., Donais, K., Whitmore, L. A., Thomas, S. M., Turner, C. E., Parsons, J. T., Horwitz, A. F. (https://doi.org/10.1038/ncb1094>
30. 2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512-522.
< , D., Konstantopoulos, K., Searson, P. C. (https://doi.org/10.1038/nrc3080>
31. 2003) ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol. 163, 583-595.
< , M. A., Desai, R., Solski, P. A., Der, C. J., Keely, P. J. (https://doi.org/10.1083/jcb.200305010>
32. 2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649-2656.
< , J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., Segall, J. E., Pollard, J. W., Condeelis, J. (https://doi.org/10.1158/0008-5472.CAN-06-1823>
33. 2008) Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev. 22, 1231-1243.
< , X., Rowe, R. G., Hiraoka, N., George, J. P., Wirtz, D., Mosher, D. F., Virtanen, I., Chernousov, M. A., Weiss, S. J. (https://doi.org/10.1101/gad.1643308>