Fol. Biol. 2012, 58, 193-202

https://doi.org/10.14712/fb2012058050193

Influence of Platelet γ‐Glutamyltransferase on Oxidative Stress and Apoptosis in the Presence of Holo-Transferrin

Azize Sener1, O. Cevik1, G. Yanikkaya‐Demirel2, S. Apikoglu‐Rabus3, D. Ozsavci1

1Biochemistry Department, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
2Microbiology‐Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
3Clinical Pharmacy Department, Faculty of Pharmacy, Marmara University, Istanbul, Turkey

Received February 2012
Accepted May 2012

References

1. Aberkane, H., Stoltz, J. F., Galteau, M. M., Wellman, M. (2002) Erythrocytes as targets for γ-glutamyltranspeptidase initiated pro-oxidant reaction. Eur. J. Haematol. 68, 262-271. <https://doi.org/10.1034/j.1600-0609.2002.01636.x>
2. Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121-126. <https://doi.org/10.1016/S0076-6879(84)05016-3>
3. Bolodeoku, J. A., Ganotakis, E. S., Mikhailidis, D. P., Winder A. F. (1997) Correlation between serum γ-glutamyl transferase activity and the platelet count. Platelets 8, 333-335. <https://doi.org/10.1080/09537109777195>
4. Bradford, M. M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248-254. <https://doi.org/10.1016/0003-2697(76)90527-3>
5. Brewer, G. J. (2010) Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol. 23, 319-326. <https://doi.org/10.1021/tx900338d>
6. Buege, J. A., Aust, S. D. (1978) Microsomal lipid peroxidation. Methods Enzymol. 52, 302-310. <https://doi.org/10.1016/S0076-6879(78)52032-6>
7. del Bello, B., Paolicchi, A., Comporti, M., Pompella, A., Maellaro, E. (1999) Hydrogen peroxide produced during γ-glutamyl transpeptidase activity is involved in prevention of apoptosis and maintenance of proliferation in U937 cells. FASEB J. 13, 69-79. <https://doi.org/10.1096/fasebj.13.1.69>
8. Dominici, S., Valentini, M., Maellaro, E., del Bello, B., Paolicchi, A., Lorenzini, E., Tongiani, R., Comporti, M., Pompella, A. (1999) Redox modulation of cell surface protein thiols in U937 lymphoma cells: the role of γ-glutamyl transpeptidase‐dependent H2O2 production and S‐thiolation. Free Radic. Biol. Med. 27, 623-635. <https://doi.org/10.1016/S0891-5849(99)00111-2>
9. Drozdz, R., Parmentier, C., Hachad, H., Leroy. P., Siest, G., Wellman, M. (1998) γ-Glutamyltransferase dependent generation of reactive oxygen species from a glutathione/ transferrin system. Free Radic. Biol. Med. 25, 786-792. <https://doi.org/10.1016/S0891-5849(98)00127-0>
10. Dufour, D. R., Lott, J. A., Nolte, F. S., Gretch, D. R., Koff, R. S., Seeff, L. B. (2000) Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests. Clin. Chem. 46, 2027-2049. <https://doi.org/10.1093/clinchem/46.12.2027>
11. Essex, D. W, Li, M. (2003) Redox control of platelet aggregation. Biochemistry 42, 129-136. <https://doi.org/10.1021/bi0205045>
12. Essex, D. W., Li, M., Feinman, R. D., Miller, A. (2004) Platelet surface glutathione reductase‐like activity. Blood 104, 1383-1385. <https://doi.org/10.1182/blood-2004-03-1097>
13. Essex, D. W. (2009) Redox control of platelet function. Antioxid. Redox Signal. 11, 1191-1225. <https://doi.org/10.1089/ars.2008.2322>
14. Halliwell, B., Gutteridge, J. M. C. (1990) The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 280, 1-8. <https://doi.org/10.1016/0003-9861(90)90510-6>
15. Karp, D. R., Shimooku, K., Lipsky. P. E. (2001) Expression of γ-glutamyl transpeptidase protects Ramos B cells from oxidation‐induced cell death. J. Biol. Chem. 276, 3798-3804. <https://doi.org/10.1074/jbc.M008484200>
16. Kröl, W., Czuba, Z., Scheller, S., Gabrys, J., Grabiec, S., Shani. J. (1990) Antioxidant property of ethanolic extract of propolis (EEP) as evaluated by inhibiting the chemiluminescence oxidation of luminol. Biochem. Int. 21, 593-597.
17. Krötz, F., Sohn, H. Y., Pohl, U. (2004) Reactive oxygen species players in the platelet game. Arterioscler. Thromb. Vasc. Biol. 24, 1988-1996. <https://doi.org/10.1161/01.ATV.0000145574.90840.7d>
18. Law, D. A., Nannizzi-Alaimo, L., Phillips, D. R. (1996) Outside-in integrin signal transduction. α IIb β 3-(GP IIb IIIa) tyrosine phosphorylation induced by platelet aggregation. J. Biol. Chem. 271, 10811-10815. <https://doi.org/10.1074/jbc.271.18.10811>
19. Lee, D., Blomhoff, R., Jacobs, D. R. (2004) Is serum γ-glutamyltransferase a marker of oxidative stress? Free Radic. Res. 38, 535-539. <https://doi.org/10.1080/10715760410001694026>
20. Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., Stadtman, E. R. (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186, 464-478. <https://doi.org/10.1016/0076-6879(90)86141-H>
21. Leytin, V., Allen, D. J., Mutlu, A., Gyulkhandanyan, A. V., Mykhaylov, S., Freedman, J. (2009) Mitochondrial control of platelet apoptosis: effect of cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. Lab. Invest. 89, 374-384. <https://doi.org/10.1038/labinvest.2009.13>
22. Lopez, J. J., Salido, G. M., Gomez‐Arteta, E., Rosado, J. A., Pariente, J. A. (2007) Thrombin induces apoptotic events through the generation of reactive oxygen species in human platelets. J. Thromb. Haemost. 5, 1283-1291. <https://doi.org/10.1111/j.1538-7836.2007.02505.x>
23. Maellaro, E., Dominici, S., del Bello, B., Valentini, M. A., Pieri, L., Perego, P., Supino, R., Zunino, F., Lorenzini, E., Paolicchi, A., Comporti, M., Pompella, A. (2000) Membrane γ-glutamyl transpeptidase activity of melanoma cells: effects on cellular H2O2 production, cell surface protein thiol oxidation and NF-κB activation status. J. Cell Sci. 113, 2671-2678. <https://doi.org/10.1242/jcs.113.15.2671>
24. Mclntyre, T., Curthoys, N. P. (1982) Renal catabolism of glutathione: Characterization of a particulate rat renal dipep- tidase that catalyzes the hydrolysis of cysteinylglycine. J. Biol. Chem. 257, 11915-11921. <https://doi.org/10.1016/S0021-9258(18)33653-6>
25. Mergel, D., Andermann, G., Andermann, C. (1979) Simulta- neous determination of oxidized and reduced glutathione in human rabbit red cells. Methods Find. Exp. Clin. Pharmacol. 1, 277-283.
26. Overbeeke, R., Steffens‐Nakken, H., Vermes, I., Reutelingsperger, C., Haanen, C. (1998) Early features of apoptosis detected by four different flow cytometry assays. Apoptosis 3, 115-121. <https://doi.org/10.1023/A:1009649025439>
27. Paolicchi, A., Tongiani, R., Tonarelli, P., Comporti, M., Pompella, A. (1997) γ-Glutamyl transpeptidase-dependent lipid peroxidation in isolated hepatocytes and HepG2 hepatoma cells. Free Radic. Biol. Med. 22, 853-860. <https://doi.org/10.1016/S0891-5849(96)00422-4>
28. Paolicchi, A., Dominici, S., Pieri, L., Maellaro, E., Pompella, A. (2002) Glutathione catabolism as a signaling mechanism. Biochem. Pharmacol. 64, 1027-1035. <https://doi.org/10.1016/S0006-2952(02)01173-5>
29. Pfeiffer, C. M., Huff, D. L., Gunter, E. W. (1999) Rapid and accurate HPLC assay for plasma total homocysteine and cysteine in a clinical laboratory setting. Clin. Chem. 45, 290-292. <https://doi.org/10.1093/clinchem/45.2.290>
30. Prakash, M. (2007) Role of non-transferrin-bound iron in chronic renal failure and other disease conditions. Indian J. Nephrol. 17, 188-193. <https://doi.org/10.4103/0971-4065.39169>
31. Sener, A., Yardimci, T. (2000) Lectin affinity chromatography and electrophoretic properties of human platelet γ-glutamyl transferase. Platelets 11, 325-330. <https://doi.org/10.1080/09537100050144740>
32. Sener, A., Yardimci, T. (2005a) Activity determination, kinetic analyses and isoenzymes identification of γ-glutamyltrans- ferase in human neutrophiles. J. Biochem. Mol. Biol. 38, 343-349.
33. Sener, A., Ozsavci, D., Yanikkaya‐Demirel, G., Aksoy, H., Oba, R., Uras, F., Yardimci K. T. (2005b) The role of γ-glutamyltransferase (GGT) activity on early platelet apoptotic process. J. Thromb. Haemost. 3 (Suppl. 1), 899-899.
34. Sener, A., Ozsavci, D., Oba, R., Yanikkaya‐Demirel, G., Uras, F., Yardimci, K. T. (2005c) Do platelet apoptosis, activation, aggregation, lipid peroxidation and platelet-leukocyte aggregate formation occur simultaneously in hyperlipidemia? Clin. Biochem. 38, 1081-1087. <https://doi.org/10.1016/j.clinbiochem.2005.09.005>
35. Sener, A., Cevik, O. (2009) Can platelet activation influence plasma γ-glutamyltransferase activity? Turk. J. Biochem. 34 (Suppl. 1), 79-79.
36. Sener. A., Ozsavci, D., Bingol‐Ozakpinar, O., Cevik, O., Yanikkaya-Demirel, G., Yardimci, T. (2009) Oxidized-LDL and Fe3+/ascorbic acid-induced oxidative modifications and phosphatidylserine exposure in human platelets are reduced by melatonin. Folia Biol. (Praha) 55, 45-52.
37. Sener, A., Cevik, O., Ozsavci, D., Yanikkaya‐Demirel, G. (2011) The pro-oxidant effect of platelet γ-glutamyltrans- ferase in the presence of iron(III). Marmara Pharm. J. 15, 30-37. (in Turkish) <https://doi.org/10.12991/201115442>
38. Stark, A. A., Arad, A., Siskindovich, S., Pagano, D. A., Zeiger, E. (1989) Effect of pH on mutagenesis by thiols in Salmonella typhimurium TA102. Mutat. Res. 224, 89-94. <https://doi.org/10.1016/0165-1218(89)90007-4>
39. Stark, A. A., Zeiger, E., Pagano, D. A. (1993) Glutathione metabolism by γ-glutamyl transpeptidase leads to lipid peroxidation: characterization of the system and relevance to hepatocarcinogenesis. Carcinogenesis 14, 183-189. <https://doi.org/10.1093/carcin/14.2.183>
40. Stocker, R., Keaney, J. F. (2004) Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84, 1381-1478. <https://doi.org/10.1152/physrev.00047.2003>
41. Szasz, G. (1969) Kinetic photometric method for serum γ-glutamyl transpeptidase. Clin. Chem. 15, 124-136. <https://doi.org/10.1093/clinchem/15.2.124>
42. Tien, B. M., Bucher, J. R., Aust, S. D. (1982) Thiol dependent lipid peroxidation. Biochem. Biophys. Res. Commun. 107, 279-285. <https://doi.org/10.1016/0006-291X(82)91701-6>
43. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., Telser, J. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44-84. <https://doi.org/10.1016/j.biocel.2006.07.001>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive