Fol. Biol. 2013, 59, 26-31
https://doi.org/10.14712/fb2013059010026
In Vivo Growth of Mantle Cell Lymphoma Xenografts in Immunodeficient Mice Is Positively Regulated by VEGF and Associated with Significant Up-regulation of CD31/PECAM1
References
1. 2010) VE-cadherin and PECAM-1 enhance ALL migration across brain microvascular endothelial cell monolayers. Exp. Hematol. 38, 733-743.
< , S. M., O’Leary, H. A., Minnear, F. L., Craig, M. D., Vos, J. A., Coad, J. E. , Gibson, L. F. (https://doi.org/10.1016/j.exphem.2010.05.001>
2. 2009) Protein profiling of plasma membranes defines aberrant signaling pathways in mantle cell lymphoma. Mol. Cell Proteomics 8, 1501-1515.
< , R. S., Jukes-Jones, R., Walewska, R., Brown D., Dyer, M. J. S., Cain, K. (https://doi.org/10.1074/mcp.M800515-MCP200>
3. 2012) Single-agent lenalidomide in relapsed/refractory mantle cell lymphoma: results from a UK phase II study suggest activity and possible gender differences. Br. J. Haematol. 159, 154-163.
< , H. E., Carey, S., Richardson, S. J., Heise, C. C., Mamidipudi, V., Shi, T., Radford, J. A., Auer, R. L., Bullard, S. H., Rule, S. A. J. (https://doi.org/10.1111/bjh.12008>
4. 2011) High serum angiogenin at diagnosis predicts for failure on long-term treatment response and for poor overall survival in non-Hodgkin lymphoma. Eur. J. Cancer. 47, 1708-1716.
< , S., Repo, H., Joensuu, H., Orpana, A., Salven, P. (https://doi.org/10.1016/j.ejca.2011.02.018>
5. 2006) VEGFR-1 (FLT-1) activation modulates acute lymphoblastic leukemia localization and survival within the bone marrow, determining the onset of extramedullary disease. Blood 107, 1608-1616.
< , R., Pereira, T., Wu, Y., Zhu, Z., Cabeçadas, J., Dias, S. (https://doi.org/10.1182/blood-2005-06-2530>
6. 2007) The role of platelet/endothelial cell adhesion molecule-1 (CD31) and CD38 antigens in marrow microenvironmental retention of acute myelogenous leukemia cells. Cancer Res. 67, 8624-8632.
< , N., Anani, L., Lopez, A., Colombat, P., Binet, C., Domenech, J., Weksler, B. B., Malavasi, F., Herault, O. (https://doi.org/10.1158/0008-5472.CAN-07-0402>
7. 2006) Reduced expression of EphB2 that parallels invasion and metastasis in colorectal tumours. Carcinogenesis 27, 454-464.
< , D. L., Zhang, J., Yuen, S. T., Tsui, W. Y., Chan, A. S. Y., Ho, C., Ji, J., Leung, S. Y., Chen, X. (https://doi.org/10.1093/carcin/bgi259>
8. 2009) Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J. Clin. Oncol. 27, 3822-3829.
< , G., Herbrecht, R., Romaguera, J., Verhoef, G., Crump, M., Gisselbrecht, C., Laurell, A., Offner, F., Strahs, A., Berkenblit, A., Hanushevsky, O., Clancy, J., Hewes, B., Moore, L., Coiffier, B. (https://doi.org/10.1200/JCO.2008.20.7977>
9. 2003) The unfolding tale of PECAM-1. FEBS Lett. 540, 7-14.
< , D. E. (https://doi.org/10.1016/S0014-5793(03)00224-2>
10. 2005) EphB2 is a prognostic factor in colorectal cancer. Clin. Cancer Res. 11, 5181-5187.
< , A. M., Zhong, F., Bheddah, S., Grabsch, H. I., Frantz, G. D., Mueller, W., Kavi, V., Quirke, P., Polakis, P., Koeppen, H. (https://doi.org/10.1158/1078-0432.CCR-05-0143>
11. 2009) Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting. Blood 113, 4604-4613.
< , A. V., Tamayo, A. T., Ford, R. J., Burger, J. A. (https://doi.org/10.1182/blood-2008-10-185827>
12. 2006) Growth factor receptors in hematopoietic stem cells: EPH family expression in CD34+ and CD133+ cell populations from mobilized peripheral blood. Int. J. Immunopathol. Pharmacol. 19, 49-56.
< , P., Wu, Q., Kvalheim, G., Suo, Z., Haakenstad, K. W., Metodiev, K., Nesland, J. M. (https://doi.org/10.1177/205873920601900105>
13. 2005) EphB2 expression across 138 human tumor types in a tissue microarray: High levels of expression in gastrointestinal cancers. Clin. Cancer Res. 11, 6450-6458.
< , A., Spichtin, H., Maurer, R., Mirlacher, M., Kiefer, J., Huusko, P., Azorsa, D., Terracciano, L., Sauter, G., Kallioniemi, O. P., Mousses, S., Tornillo, L. (https://doi.org/10.1158/1078-0432.CCR-04-2458>
14. 2010) The HGF/MET pathway as target for the treatment of multiple myeloma and B-cell lymphomas. Biochim. Biophys. Acta 1806, 208-219.
, K., Tjin, E. P. M., Spaargaren, M., Pals, S. T. (
15. 2012) Mesenchymal stromal cells protect mantle cell lymphoma cells from spontaneous and drug-induced apoptosis through secretion of B-cell activating factor and activation of the canonical and non-canonical nuclear factor κB pathways. Haematologica 97, 1255-1263.
< , D. J., Goodell, L., Glod, J., Gélinas, C., Rabson, A. B., Strair, R. K. (https://doi.org/10.3324/haematol.2011.040659>
16. 2008) A phase II study of enzastaurin, a protein kinase C β inhibitor, in patients with relapsed or refractory mantle cell lymphoma. Ann. Oncol. 19, 247-253.
< , F., Seymour, J. F., Kluin-Nelemans, H. C., Grigg, A., Wolf, M., Pfreundschuh, M., Tilly, H., Raemaekers, J., van ‘t Veer, M. B., Milpied, N., Cartron, G., Pezzutto A., Spencer, A., Reyes, F., Dreyling, M. (https://doi.org/10.1093/annonc/mdm463>
17. 2011) Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood 117, 26-38.
< , P., Dreyling, M., Wiestner, A. (https://doi.org/10.1182/blood-2010-04-189977>
18. 2010) Engagement of CD31 delivers an activating signal that contributes to the survival of chronic lymphocytic leukaemia cells. Br. J. Haematol. 151, 252-264.
< , A., Prevosto, C., Catellani, S., Rocco, I., Garuti, A., Zocchi, M. R. (https://doi.org/10.1111/j.1365-2141.2010.08343.x>
19. 2012) EphB2 activity plays a pivotal role in pediatric medulloblastoma cell adhesion and invasion. Neuro Oncol. 14, 1125-1135.
< , A. H., den Dunnen, W. F., Hulleman, E., van Vuurden, D. G., Garcia-Manero, G., Yang, H., Scherpen, F. J., Kampen, K. R., Hoving, E. W., Kamps, W. A., Diks, S. H., Peppelenbosch, M. P., de Bont, E. S. (https://doi.org/10.1093/neuonc/nos130>
20. 2011) Epidemiology and etiology of mantle cell lymphoma and other non-Hodgkin lymphoma subtypes. Semin. Cancer Biol. 21, 293-298.
< , K. E., Hjalgrim, H. (https://doi.org/10.1016/j.semcancer.2011.09.010>
21. 2010) Temsirolimus has activity in non-mantle cell non-Hodgkin’s lymphoma subtypes: The University of Chicago phase II consortium. J. Clin. Oncol. 28, 4740-4746.
< , S. M., van Besien, K., Karrison, T., Dancey, J., McLaughlin, P., Younes, A., Smith, S., Stiff, P., Lester, E., Modi, S., Doyle, L. A., Vokes, E. E., Pro, B. (https://doi.org/10.1200/JCO.2010.29.2813>
22. 2009) A phase II trial of single agent bevacizumab in patients with relapsed, aggressive non-Hodgkin lymphoma: Southwest oncology group study S0108. Leuk. Lymphoma 50, 728-735.
< , A. T., Unger, J. M., Rimsza, L. M., Bellamy, W. T., Iannone, M., Persky, D. O., Leblanc, M., Fisher, R. I., Miller, T. P. (https://doi.org/10.1080/10428190902856808>
23. 1993) A new family of heparin-binding growth/differentiation factors: increased midkine expression in Wilms’ tumor and other human carcinomas. Cancer Res. 53, 1281-1285.
, J., Kadomatsu, K., Matsubara, S., Nakagawara, A., Hamanoue, M., Takao, S., Shimazu, H., Ohi, Y., Muramatsu, T. (
24. 2004) Targeting autocrine and paracrine VEGF receptor pathways inhibits human lymphoma xenografts in vivo. Blood 104, 2893-2902.
< , E. S., Teruya-Feldstein, J., Wu, Y., Zhu, Z., Hicklin, D. J., Moore, M. A. S. (https://doi.org/10.1182/blood-2004-01-0226>
25. 2010) Cytostatic and anti-angiogenic effects of temsirolimus in refractory mantle cell lymphoma. J. Hematol. Oncol. 3, 30-33.
< , L., Shi, W. Y., Wu, Z. Y., Varna, M., Wang, A. H., Zhou, L., Chen, L., Shen, Z. X., Lu, H., Zhao, W. L., Janin, A. (https://doi.org/10.1186/1756-8722-3-30>
26. 2011) An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin’s lymphoma. Ann. Oncol. 22, 1622-1627.
< , T. E., Vose, J. M., Zinzani, P. L., Reeder, C. B., Buckstein, R., Polikoff, J. A., Bouabdallah, R., Haioun, C., Tilly, H., Guo, P., Pietronigro, D., Ervin-Haynes, A. L., Czuczman, M. S. (https://doi.org/10.1093/annonc/mdq626>
27. 2011) Ets family members induce lymphangiogenesis through physical and functional interaction with Prox1. J. Cell. Sci. 124, 2753-2762.
< , Y., Yamazaki, T., Mihira, H., Itoh, T., Suehiro, J., Yuki, K., Harada, K., Morikawa, M., Iwata, C., Minami, T., Morishita, Y., Kodama, T., Miyazono, K., Watabe, T. (https://doi.org/10.1242/jcs.083998>
28. 1999) An Eph receptor regulates integrin activity through R-Ras. Proc. Natl. Acad. Sci. USA 96, 13813-13818.
< , J. X., Wang, B., Kalo, M. S., Zisch, A. H., Pasquale, E. B., Ruoslahti, E. (https://doi.org/10.1073/pnas.96.24.13813>