Fol. Biol. 2013, 59, 76-86

https://doi.org/10.14712/fb2013059020076

ADAM10/17-Dependent Release of Soluble c-Met Correlates with Hepatocellular Damage

K. Chalupský1, I. Kanchev1, O. Žbodáková1, H. Buryová1, M. Jiroušková1, V. Kořínek2, M. Gregor1, Radislav Sedláček1

1Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
2Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic

Received February 2013
Accepted February 2013

References

1. Arvidsson, S., Kwasniewski, M., Riano-Pachon, D. M., Mueller-Roeber, B. (2008) QuantPrime – a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics 9, 465. <https://doi.org/10.1186/1471-2105-9-465>
2. Birchmeier, C., Birchmeier, W., Gherardi, E.,Vande Woude, G. F. (2003) Met, metastasis, motility and more. Nat. Rev. Mol. Cell. Biol. 4, 915-925. <https://doi.org/10.1038/nrm1261>
3. Borowiak, M., Garratt, A. N., Wustefeld, T., Strehle, M., Trautwein, C., Birchmeier, C. (2004) Met provides essential signals for liver regeneration. Proc. Natl. Acad. Sci. USA 101, 10608-10613. <https://doi.org/10.1073/pnas.0403412101>
4. Comoglio, P. M. (2001) Pathway specificity for Met signalling. Nat. Cell Biol. 3, E161-162. <https://doi.org/10.1038/35083116>
5. Corpechot, C., Barbu, V., Wendum, D., Chignard, N., Housset, C., Poupon, R., Rosmorduc, O. (2002) Hepatocyte growth factor and c-Met inhibition by hepatic cell hypoxia: a potential mechanism for liver regeneration failure in experimental cirrhosis. Am. J. Pathol. 160, 613-620. <https://doi.org/10.1016/S0002-9440(10)64881-X>
6. Cramer, T., Schuppan, D., Bauer, M., Pfander, D., Neuhaus, P., Herbst, H. (2004) Hepatocyte growth factor and c-Met expression in rat and human liver fibrosis. Liver Int. 24, 335-344. <https://doi.org/10.1111/j.1478-3231.2004.0926.x>
7. Diehl, A. M. (2000) Cytokine regulation of liver injury and repair. Immunol. Rev. 174, 160-171. <https://doi.org/10.1034/j.1600-0528.2002.017411.x>
8. Fickert, P., Stoger, U., Fuchsbichler, A., Moustafa, T., Marschall, H. U., Weiglein, A. H., Tsybrovskyy, O., Jaeschke, H., Zatloukal, K., Denk, H., Trauner, M. (2007) A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am. J. Pathol. 171, 525-536. <https://doi.org/10.2353/ajpath.2007.061133>
9. Foveau, B., Ancot, F., Leroy, C., Petrelli, A., Reiss, K., Vingtdeux, V., Giordano, S., Fafeur, V., Tulasne, D. (2009) Down-regulation of the met receptor tyrosine kinase by presenilin-dependent regulated intramembrane proteolysis. Mol. Biol. Cell 20, 2495-2507. <https://doi.org/10.1091/mbc.e08-09-0969>
10. Giordano, S., Di Renzo, M. F., Ferracini, R., Chiado-Piat, L., Comoglio, P. M. (1988) p145, a protein with associated tyrosine kinase activity in a human gastric carcinoma cell line. Mol. Cell. Biol. 8, 3510-3517.
11. Hammond, D. E., Urbe, S., Vande Woude, G. F., Clague, M. J. (2001) Down-regulation of MET, the receptor for hepatocyte growth factor. Oncogene 20, 2761-2770. <https://doi.org/10.1038/sj.onc.1204475>
12. Hammond, D. E., Carter, S., Clague, M. J. (2004) Met receptor dynamics and signalling. Curr. Top. Microbiol. Immunol. 286, 21-44.
13. Hemmann, S., Graf, J., Roderfeld, M., Roeb, E. (2007) Expression of MMPs and TIMPs in liver fibrosis – a systematic review with special emphasis on anti-fibrotic strategies. J. Hepatol. 46, 955-975. <https://doi.org/10.1016/j.jhep.2007.02.003>
14. Huh, C. G., Factor, V. M., Sanchez, A., Uchida, K., Conner, E. A., Thorgeirsson, S. S. (2004) Hepatocyte growth factor/cmet signaling pathway is required for efficient liver regeneration and repair. Proc. Natl. Acad. Sci. USA 101, 4477-4482. <https://doi.org/10.1073/pnas.0306068101>
15. Huovila, A. P., Turner, A. J., Pelto-Huikko, M., Karkkainen, I., Ortiz, R. M. (2005) Shedding light on ADAM metalloproteinases. Trends Biochem. Sci. 30, 413-422. <https://doi.org/10.1016/j.tibs.2005.05.006>
16. Inoue, H., Yokoyama, F., Kita, Y., Yoshiji, H., Tsujimoto, T., Deguchi, A., Nakai, S., Morishita, A., Uchida, N., Masaki, T., Watanabe, S., Kuriyama, S. (2006) Relationship between the proliferative capability of hepatocytes and the intrahepatic expression of hepatocyte growth factor and c-Met in the course of cirrhosis development in rats. Int. J. Mol. Med. 17, 857-864.
17. Kim, W. H., Matsumoto, K., Bessho, K., Nakamura, T. (2005) Growth inhibition and apoptosis in liver myofibroblasts promoted by hepatocyte growth factor leads to resolution from liver cirrhosis. Am. J. Pathol. 166, 1017-1028. <https://doi.org/10.1016/S0002-9440(10)62323-1>
18. Kopitz, C., Gerg, M., Bandapalli, O. R., Ister, D., Pennington, C. J., Hauser, S., Flechsig, C., Krell, H. W., Antolovic, D., Brew, K., Nagase, H., Stangl, M., von Weyhern, C. W., Brucher, B. L., Brand, K., Coussens, L. M., Edwards, D. R., Kruger, A. (2007) Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res. 67, 8615-8623. <https://doi.org/10.1158/0008-5472.CAN-07-0232>
19. Lalani el-N., Poulsom, R., Stamp, G., Fogt, F., Thomas, P., Nanji, A. A. (2005) Expression of hepatocyte growth factor and its receptor c-met, correlates with severity of pathological injury in experimental alcoholic liver disease. Int. J. Mol. Med. 15, 811-817.
20. Livak, K. J., Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods 25, 402-408. <https://doi.org/10.1006/meth.2001.1262>
21. Lu, Y., Jiang, F., Zheng, X., Katakowski, M., Buller, B., To, S. S., Chopp, M. (2011) TGF-β1 promotes motility and invasiveness of glioma cells through activation of ADAM17. Oncol. Rep. 25, 1329-1335. <https://doi.org/10.3727/096504017X14876227286564>
22. Ma, P. C., Maulik, G., Christensen, J., Salgia, R. (2003) c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 22, 309-325. <https://doi.org/10.1023/A:1023768811842>
23. Marquardt, J. U., Seo, D., Gomez-Quiroz, L. E., Uchida, K., Gillen, M. C., Kitade, M., Kaposi-Novak, P., Conner, E. A., Factor, V. M., Thorgeirsson, S. S. (2012) Loss of c-Met accelerates development of liver fibrosis in response to CCl(4) exposure through deregulation of multiple molecular pathways. Biochim. Biophys. Acta 1822, 942-951. <https://doi.org/10.1016/j.bbadis.2012.02.012>
24. Matsuda, Y., Matsumoto, K., Ichida, T., Nakamura, T. (1995) Hepatocyte growth factor suppresses the onset of liver cirrhosis and abrogates lethal hepatic dysfunction in rats. J. Biochem. 118, 643-649. <https://doi.org/10.1093/oxfordjournals.jbchem.a124958>
25. Morio, L. A., Chiu, H., Sprowles, K. A., Zhou, P., Heck, D. E., Gordon, M. K., Laskin, D. L. (2001) Distinct roles of tumor necrosis factor-α and nitric oxide in acute liver injury induced by carbon tetrachloride in mice. Toxicol. Appl. Pharmacol. 172, 44-51. <https://doi.org/10.1006/taap.2000.9133>
26. Noji, S., Tashiro, K., Koyama, E., Nohno, T., Ohyama, K., Taniguchi, S., Nakamura, T. (1990) Expression of hepatocyte growth factor gene in endothelial and Kupffer cells of damaged rat livers, as revealed by in situ hybridization. Biochem. Biophys. Res. Commun. 173, 42-47. <https://doi.org/10.1016/S0006-291X(05)81018-6>
27. Petrelli, A., Circosta, P., Granziero, L., Mazzone, M., Pisacane, A., Fenoglio, S., Comoglio, P. M., Giordano, S. (2006) Abinduced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc. Natl. Acad. Sci. USA 103, 5090-5095. <https://doi.org/10.1073/pnas.0508156103>
28. Prat, M., Crepaldi, T., Gandino, L., Giordano, S., Longati, P., Comoglio, P. (1991) C-terminal truncated forms of Met, the hepatocyte growth factor receptor. Mol. Cell. Biol. 11, 5954-5962.
29. Pruessmeyer, J., Ludwig, A. (2009) The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin. Cell. Dev. Biol. 20, 164-174. <https://doi.org/10.1016/j.semcdb.2008.09.005>
30. Scheller, J., Chalaris, A., Garbers, C., Rose-John, S. (2011) ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol. 32, 380-387. <https://doi.org/10.1016/j.it.2011.05.005>
31. Schelter, F., Kobuch, J., Moss, M. L., Becherer, J. D., Comoglio, P. M., Boccaccio, C., Kruger, A. (2010) A disintegrin and metalloproteinase-10 (ADAM-10) mediates DN30 antibody-induced shedding of the met surface receptor. J. Biol. Chem. 285, 26335-26340. <https://doi.org/10.1074/jbc.M110.106435>
32. Schirmacher, P., Geerts, A., Pietrangelo, A., Dienes, H. P., Rogler, C. E. (1992) Hepatocyte growth factor/hepatopoietin A is expressed in fat-storing cells from rat liver but not myofibroblast-like cells derived from fat-storing cells. Hepatology 15, 5-11. <https://doi.org/10.1002/hep.1840150103>
33. Takami, T., Kaposi-Novak, P., Uchida, K., Gomez-Quiroz, L. E., Conner, E. A., Factor, V. M., Thorgeirsson, S. S. (2007) Loss of hepatocyte growth factor/c-Met signaling pathway accelerates early stages of N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Res. 67, 9844-9851. <https://doi.org/10.1158/0008-5472.CAN-07-1905>
34. Teis, D., Huber, L. A. (2003) The odd couple: signal transduction and endocytosis. Cell. Mol. Life Sci. 60, 2020-2033. <https://doi.org/10.1007/s00018-003-3010-2>
35. Trusolino, L., Bertotti, A., Comoglio, P. M. (2010) MET signalling: principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell. Biol. 11, 834-848. <https://doi.org/10.1038/nrm3012>
36. Uehara, Y., Minowa, O., Mori, C., Shiota, K., Kuno, J., Noda, T., Kitamura, N. (1995) Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373, 702-705. <https://doi.org/10.1038/373702a0>
37. Ueki, T., Kaneda, Y., Tsutsui, H., Nakanishi, K., Sawa, Y., Morishita, R., Matsumoto, K., Nakamura, T., Takahashi, H., Okamoto, E., Fujimoto J. (1999) Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat. Med. 5, 226-230. <https://doi.org/10.1038/5593>
38. Wajih, N., Walter, J., Sane, D. C. (2002) Vascular origin of a soluble truncated form of the hepatocyte growth factor receptor (c-met). Circ. Res. 90, 46-52. <https://doi.org/10.1161/hh0102.102756>
39. Xu, L., Hui, A. Y., Albanis, E., Arthur, M. J., O’Byrne, S. M., Blaner, W. S., Mukherjee, P., Friedman, S. L., Eng, F. J. (2005) Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut 54, 142-151. <https://doi.org/10.1136/gut.2004.042127>
40. Yang, Y., Wang, Y., Zeng, X., Ma, X. J., Zhao, Y., Qiao, J., Cao, B., Li, Y. X., Ji, L., Wang, Y. L. (2012) Self-control of HGF regulation on human trophoblast cell invasion via enhancing c-Met receptor shedding by ADAM10 and ADAM17. J. Clin. Endocrinol. Metab. 97, E1390-1401. <https://doi.org/10.1210/jc.2012-1150>
41. Zarnegar, R., DeFrances, M. C., Kost, D. P., Lindroos, P., Michalopoulos, G. K. (1991) Expression of hepatocyte growth factor mRNA in regenerating rat liver after partial hepatectomy. Biochem. Biophys. Res. Commun. 177, 559-565. <https://doi.org/10.1016/0006-291X(91)92020-K>
42. Zeng, X., Sun, Y., Yang, H. X., Li, D., Li, Y. X., Liao, Q. P., Wang, Y. L. (2009) Plasma level of soluble c-Met is tightly associated with the clinical risk of preeclampsia. Am. J. Obstet. Gynecol. 201, 618.e1-7. <https://doi.org/10.1016/j.ajog.2009.07.032>
43. Zhang, Y. W., Graveel, C., Shinomiya, N., Vande Woude, G. F. (2004) Met decoys: will cancer take the bait? Cancer Cell 6, 5-6. <https://doi.org/10.1016/j.ccr.2004.07.003>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive