Fol. Biol. 2014, 60, 53-56
https://doi.org/10.14712/fb2014060020053
Importance of Proapoptotic Protein PUMA in Cell Radioresistance
References
1. 2007) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr. Opin. Immunol. 19, 488-496.
< , J. M., Cory, S. (https://doi.org/10.1016/j.coi.2007.05.004>
2. 2003) DNA damage activates ATM through intermolecular autophosphorylation and di mer dissociation. Nature 421, 486-488.
< , C. J., Kastan, M. B. (https://doi.org/10.1038/nature01368>
3. 2003) Chk1 and Chk2 kinases in check point control and cancer. Cancer Cell 3, 421-429.
< , J., Lukas, J. (https://doi.org/10.1016/S1535-6108(03)00110-7>
4. 2010) Apoptosis: em bedded in membranes. Curr. Opin. Cell Biol. 22, 845-851.
< , C., Leber, B., Andrews, D. W. (https://doi.org/10.1016/j.ceb.2010.08.002>
5. 1992) Mice deficient for p53 are developmentally normal but suscepti ble to spontaneous tumours. Nature 356, 215-221.
< , L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A. Jr, Butel, J. S., Bradley, A. (https://doi.org/10.1038/356215a0>
6. 2005) BH3-only proteins Puma and Bim are rate-limiting for γ-radiationand glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 106, 4131-4138.
< , M., Michalak, E. M., Kelly, P. N., Labi, V., Niederegger, H., Coultas, L., Adams, J. M., Strasser, A., Villunger, A. (https://doi.org/10.1182/blood-2005-04-1595>
7. 2002) Tissue-specific induction of p53 targets in vivo. Cancer Res. 62, 7316-7327.
, P., Bernhard, E. J., El-Deiry, W. S. (
8. 2009) Radiation protection by a new chemical entity, Ex-Rad: efficacy and mechanisms. Radiat. Res. 171, 173-179.
< , S. P., Perkins, M. W., Hieber, K., Kulkarni, S., Kao, T. C., Reddy, E. P., Reddy, M. V., Maniar, M., Seed, T., Kumar, K. S. (https://doi.org/10.1667/RR1367.1>
9. 2003) The role of p53 in determining sensitivity to radiotherapy. Nat. Rev. Cancer 3, 117-129.
< , A. V., Komarova, E. A. (https://doi.org/10.1038/nrc992>
10. 2003) Puma is an essential mediator of p53-dependent and independent apoptotic pathways. Cancer Cell 4, 321-328.
< , J. R., Parganas, E., Lee, Y., Yang, C., Wang, J., Brennan, J., MacLean, K. H., Han, J., Chittenden, T., Ihle, J. N., McKinnon, P. J., Cleveland, J. L., Zambetti, G. P. (https://doi.org/10.1016/S1535-6108(03)00244-7>
11. 1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733-1737.
< , P. G., Komarova, E. A., Kondratov, R. V., Christov-Tselkov, K., Coon, J. S., Chernov, M. V., Gudkov, A. V. (https://doi.org/10.1126/science.285.5434.1733>
12. 2000) Different impact of p53 and p21 on the radiation response of mouse tissues. Oncogene 19, 3791-3798.
< , E. A., Christov, K., Faerman, A. I., Gudkov, A. V. (https://doi.org/10.1038/sj.onc.1203717>
13. 2004) Dual effect of p53 on radiation sensitivity in vivo: p53 pro motes hematopoietic injury, but protects from gastrointestinal syndrome in mice. Oncogene 23, 3265-3271.
< , E. A., Kondratov, R. V., Wang, K., Christov, K., Golovkina, T. V., Goldblum, J. R., Gudkov, A. V. (https://doi.org/10.1038/sj.onc.1207494>
14. 2011) Uncoupling p53 functions in radiation-induced in testinal damage via PUMA and p21. Mol. Cancer Res. 9, 616-625.
< , B. J., Qiu, W., Liu, H., Cheng, T., Zhang, L., Yu, J. (https://doi.org/10.1158/1541-7786.MCR-11-0052>
15. 2010) A small molecule inhibitor of p53 stimulates amplification of hematopoietic stem cells but does not promote tumor development in mice. Cell Cycle 9, 1434-1443.
< , K. I., Shneyder, J., Antoch, M. P., Toshkov, I. A., Novototskaya, L. R., Komarov, P. G., Komarova, E. A., Gudkov, A. V. (https://doi.org/10.4161/cc.9.7.11508>
16. 2011) Development of smallmolecule PUMA inhibitors for mitigating radia tioninduced cell death. Curr. Top. Med. Chem. 11, 281-290.
< , G., Li, M., Zevola, N., Bakan, A., Zhang, L., Epperly, M., Greenberger, J. S., Yu, J., Bahar, I. (https://doi.org/10.2174/156802611794072641>
17. 2006) Apoptic machinery: the Bcl-2 family pro teins in the role of inspectors and superintendents. Acta Medica (Hradec Králové), 49, 13-18.
, A. (
18. 2008) PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2, 576-583.
< , W., CarsonWalter, E. B., Liu, H., Epperly, M., Greenberger, J. S., Zambetti, G. P., Zhang, L., Yu, J. (https://doi.org/10.1016/j.stem.2008.03.009>
19. 2011) The importance of senes cence in ionizing radiationinduced tumour suppression. Folia Biol. (Praha) 57, 41-46.
, J., Rezáčová, M. (
20. 2008) Changes in phosphorylation of histone H2A.X and p53 in response of peripheral blood lymphocytes to γ irradiation. Acta Biochim. Pol. 55, 381-390.
< , Z., Rezácová, M., Vávrová, J., Tichý, A., Vokurková, D., Zoelzer, F., Reháková, Z., Osterreicher, J., Lukásová, E. (https://doi.org/10.18388/abp.2008_3086>
21. 2010) Prospects for the use of ATR inhibitors to treat cancer. Pharmaceuticals 3, 1311-1334.
< , J. M., Kaufmann, S. H. (https://doi.org/10.3390/ph3051311>
22. 2005) The transcriptional targets of p53 in apoptosis control. Biochem. Biophys. Res. Commun. 331, 851-858.
< , L., Zhang, L. (https://doi.org/10.1016/j.bbrc.2005.03.189>
23. 2008) PUMA, a potent killer with or with out p53. Oncogene 27 (Suppl 1) 71-83.
< , J., Zhang, L. (https://doi.org/10.1038/onc.2009.45>
24. 2010) Deletion of Puma protects hematopoietic stem cells and confers long-term survival in response to high-dose γ-irradiation. Blood 115, 3472-3480.
< , H., Shen, H., Yuan, Y., XuFeng, R., Hu, X., Garrison, S. P., Zhang, L., Yu, J., Zambetti, G. P., Cheng, T. (https://doi.org/10.1182/blood-2009-10-248278>